Methicillin-resistant Staphylococcus aureus nasal carriage between healthy students of medical and nonmedical universities

Soleiman Abroo MSc a, Nima Hosseini Jazani PhD a,b, Yaeghob Sharifi PhD a,b,*

a Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azarbyjan, Iran
b Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azarbyjan, Iran

Key Words:
Staphylococcus aureus
MRSA
Nasal carriers
SCCmec

The excessive use and abuse of antibiotics has been increasing with the rapid of resistant strains; >20,000 potential resistance genes exist among bacterial genome.1 Methicillin-resistant Staphylococcus aureus (MRSA) is a serious risk to patients in health care (HA) and a challenge for public health, and community-acquired (CA) infections seem to be increasing among people in different areas.2 MRSA strains harbor the mecA gene, encoding penicillin-binding protein 2a, which is poorly acylated by β-lactam antibiotics3 and is also carried on mobile genetic elements inserted into the staphylococcal chromosome, designated staphylococcal cassette chromosome (SCC) mec elements.4 Of 12 different and known SCCmec types, types IV (mainly) and V have been found in CA MRSA strains.5 These types tend to be less resistant but more transmissible. The first report of CA MRSA among children was reported in the United States in the late 1990s,6 and after that, outbreaks of CA MRSA infections have been documented in correctional facilities, among athletic teams and military recruits, in newborn nurseries, and among homosexuality.7,8 The presence of an association between virulence genes, such as the pvl gene encoding Panton-Valentine leukocidin toxin and et gene encoding exfoliative toxin, and emerging CA MRSA clones with specific clinical presentations has been demonstrated in some studies.9 Because S aureus strains that reside in the anterior nares serve as a reservoir for future infection10 via acquiring antimicrobial resistance and can play an important role in the spread of such resistance within the community, this study aimed to investigate the prevalence, antimicrobial susceptibility, and molecular characteristics of CA MRSA between 2 groups of college students (medical and nonmedical) in the universities in Urmia, Iran.

METHODS AND MATERIALS

Study population

From 2012-2015, a total of 700 healthy student volunteers who were residing in dormitories of state-run universities in Urmia, Iran, which are under the direct supervision of Iran’s Ministry of Science, Research and Technology (for nonmedical universities [NMU]) and Ministry of Health and Medical Education (for medical universities [MU]), were enrolled in this study. Included MU students were
in the basic medical sciences course and not in health care practice or internship programs.

Informed consent was obtained from all individual participants included in the study. Data from each case were collected to distinguish HA MRSA from CA MRSA strains, as defined by the Centers for Disease Control and Prevention.\(^\text{11}\) Every student with a history of antibiotic consumption during the last 2 months; hospitalization; admission to a nursing home, skilled nursing facility, or hospice; dialysis for renal failure; recent surgery; and permanent indwelling catheters or medical devices during the last year were excluded from this study.

Bacterial isolates

The volunteers were screened for nasal carriage of *S aureus* by streaking both anterior nares with sterile moistened cotton swabs to a depth of approximately 1 cm, and rotated 5 times.\(^\text{12}\) Nasal swabs were placed in tubes containing sterile normal saline and quickly transported to the microbiology laboratory at the faculty of medicine in Urmia and inoculated onto mannitol salt agar and blood agar plate media and incubated at 35°C for 48 hours. The isolates were presumptively identified as *S aureus* by standard biochemical tests, such as gram stain, catalase test, and coagulase test. In addition, polymerase chain reaction (PCR) was used for detection of species-specific genes to confirm their identities.\(^\text{13}\) Isolates were stored separately in tryptic soy broth medium with 15% glycerol at −20°C for further phenotypic and genotypic analysis.

Antibiotic susceptibility patterns of the isolates

The antimicrobial susceptibility of the isolates was determined using the disk diffusion method, according to the Clinical and Laboratory Standards Institute (CLSI) guidelines,\(^\text{14}\) for the following antimicrobial agents: penicillin (10 U), gentamicin (10 μg), erythromycin (15 μg), rifampin (5 μg), mupirocin (200 μg), ciprofloxacin (5 μg), tetracycline (30 μg), clindamycin (2 μg), and trimethoprim-sulfamethoxazole (1.25/23.75 μg). *S aureus* ATCC 35923 (American Type Culture Collection, Manassas, VA) has been used as a quality control strain for susceptibility testing.

Initially, MRSA isolates were identified using cefoxitin (30 μg) disks (all antibiotic disks were from Mast Diagnostics, Merseyside, UK) based on the 2014 CLSI recommendations and following that correlated with the presence of the *mec A* gene using PCR.\(^\text{15}\) All the MRSA isolates were assessed regarding their susceptibility to vancomycin, using BHI-vancomycin (brain heart infusion) screening agar (in both 4- and 6-μg/mL concentrations)\(^\text{14}\) and Etest (Liofilchem, Roseto degli Abruzzi, Italy) for determination of minimum inhibitory concentrations.

SCC mec typing and detection of virulence genes among MRSA

The genomic DNA of MRSA isolates was extracted using a commercial kit (CinnaClon, Tehran, Iran) for gram-positive bacteria. Multiplex PCRs were performed on MRSA for separate detection of SCC mec type (I-V).\(^\text{15}\) PCR was used for amplification of virulence genes encoding *pvl* and *eta* and *etb* as described previously.\(^\text{16,17}\) Reactions were performed in a thermal cycler (bioer, Hangzhou, China). Amplified PCR products were analyzed using gel electrophoresis on a 1.5% agarose gel with 0.5% Tris-borate buffer. The gels with safe stains were photographed under ultraviolet illumination (G:BOX; Syngene, Cambridge, UK). Each PCR assay included positive control strains (provided by Dr Mohammad Ahangarzadeh Rezaee, Department of Microbiology, Tabriz University of Medical Sciences) and a negative control, which contained all the reagents but not the template DNA. All molecular analyses were performed at the Laboratory of Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.

Statistical analysis

The prevalence of *S aureus*, MRSA, and virulence genes were compared using Fisher exact test. Statistical analysis was performed with SPSS version 16 (SPSS Inc, Chicago, IL). *P* < .05 was regarded as statistically significant.

RESULTS

During the study period, nasal screening identified 137 (19.6%) carriers of *S aureus*, and their distributions are shown in Table 1. Eighteen out of 137 (13.14%) isolates were defined as MRSA using a cefoxitin 30-μg disk screening test and PCR (for *mec A* gene) (Fig 1). The isolates have been considered as CA MRSA via the lack features suggesting hospital-associated acquisition (Centers for Disease Control and Prevention criteria).\(^\text{11}\)

The antimicrobial susceptibility patterns of MRSA and methicillin-sensitive *S aureus* (MSSA) isolates are shown in Table 2.

The highest rate of resistance was shown with penicillin (93.4%). All isolates in both groups were sensitive to rifampin, with the exception

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean ± SD (range)</td>
<td>22.29 ± 2.49 (18-46)</td>
</tr>
<tr>
<td>Male (NMUs: n = 285, 40.7%; MUs: n = 225, 32.1%)</td>
<td>510 (72.8)</td>
</tr>
<tr>
<td>Female (NMUs: n = 65, 9.3%; MUs: n = 125, 17.9%)</td>
<td>190 (271)</td>
</tr>
<tr>
<td>No. of Staphylococcus aureus nasal carrier among students</td>
<td>63 (46)</td>
</tr>
<tr>
<td>MUs (men: n = 52, 82.5%; women: n = 11, 17.5%)</td>
<td>74 (54)</td>
</tr>
<tr>
<td>NMUs (men: n = 66, 89.2%; women: n = 8, 10.8%)</td>
<td>137 (19.6)</td>
</tr>
<tr>
<td>MRSA isolates</td>
<td>7 (2.0)</td>
</tr>
<tr>
<td>MUs</td>
<td>11 (3.14)</td>
</tr>
<tr>
<td>Total (all were from men)</td>
<td>18 (2.57)</td>
</tr>
</tbody>
</table>

NOTE. Values are n(%) or as otherwise indicated.

MRSA, methicillin-resistant *S aureus*; MU, medical university; NMU, nonmedical university.
A disturbing trend related to Mupirocin is used to eliminate nasal colonization of Staphylococcus aureus. Based on this evidence, a lower rate of MRSA was detected among the study population is a threat to the patients and a source of transmission to other susceptible individuals, particularly on campus.

The antibiotic susceptibility patterns of the isolates revealed that multidrug resistance (resistance against at least 2 different classes of antimicrobials) was more common among MRSA (n = 15/18; 83.33%) isolates than MSSA (n = 40/119; 33.61%). In vitro antimicrobial susceptibility tests of MRSA isolates showed that 3 (16.67%) isolates were susceptible to non–β-lactam agents, whereas sensitivity to 5, 4, 3, and 1 non–β-lactam antibiotics was observed in 1 (5.56%), 3 (16.67%), 5 (27.78%) and 6 (33.33%) MSSA isolates, respectively. Despite these findings, our study revealed less resistance in CA MRSA to rifampin, mupirocin, gentamicin, and trimethoprim-sulfamethoxazole. This is consistent with other studies that indicated CA MRSA strains are less resistant to non–β-lactam antibiotics. However, multidrug resistance between CA MRSA and MSSA isolates has obviously developed. Easy access to antibiotics without doctors’ prescriptions may cause development of such resistance among staphylococcal isolates in our region.

A notable point in this research is the sensitivity of all the isolates (except 1) to rifampin. This reduction may partly relate to the decreased prescription of rifampin by clinicians for long periods in our region. Although this antibiotic is rarely used as a single agent to treat CA MRSA infection because resistance can occur rapidly; however, it can be used synergistically with other antibiotics like vancomycin (in this study, all the isolates were sensitive) for treatment of serious S aureus infection, such as endocarditis, as recommended previously. Mupirocin is used to eliminate nasal colonization of S aureus, particularly MRSA. In this study, resistance to mupirocin (n = 6; 4.4%) was also low, and only 1 isolate was CA MRSA. Based on the 2014 CLSI criteria, none of the mupirocin-resistant isolates were considered as high-level resistance because all isolates exhibited zones of inhibition. Therefore, mupirocin can be used for decreasing nasal carriage if necessary.

Drug-resistant bacteria are an increasing threat to public health, as highlighted by an estimate that in the United States, MRSA may contribute to more deaths than HIV. A disturbing trend related to such resistant bacteria is the possibility of their spread within the community. This study showed that S aureus nasal carriage among enrolled students was 19.6% (137/700). The analysis of distribution of S aureus between the 2 study groups revealed a slight increase in the isolates from NMU (n = 74; 54%) than MU (n = 63; 46%) students; however, this difference was not statistically significant (P = 0.166). The prevalence of CA MRSA was relatively low (n = 18/137; 13.14%). The frequency of MRSA isolates was also higher among NMU (n = 11/74; 14.86%) than MU (n = 7/63; 11.11%) students; however, the difference was not significant (P = 0.349).

In our research, the frequency of nasal carriage was notably higher in male (n = 118; 86.1%) than female (n = 19; 13.9%) students (P = 0.001). Meanwhile, MRSA was not detected among female students of both groups. It seems that the male sex is a risk factor for S aureus nasal colonization. This finding may relate to an increased attention to health issues, especially personal hygiene by the female sex. On the other hand, it may also be affected by the small sample size for women in comparison with men (190 vs 510, respectively). The various prevalence of CA MRSA has been reported from different studies around the world. It has been shown that nasal carriers have an increased risk of acquiring an infection with this bacterium. CA MRSA can cause skin and soft tissue infections and, in some cases, respiratory tract infection, bacteremia, and septic shock. A study showed that 80% of strains causing bacteremia in carriers were endogenous. Based on this evidence, detection of MRSA among the study population is a threat to the patients and a source of transmission to other susceptible individuals, particularly on campus.

The antibiotic susceptibility patterns of the isolates revealed that multidrug resistance (resistance against at least 2 different classes of antimicrobials) was more common among MRSA (n = 15/18; 83.33%) isolates than MSSA (n = 40/119; 33.61%). In vitro antimicrobial susceptibility tests of MRSA isolates showed that 3 (16.67%) isolates were susceptible to non–β-lactam agents, whereas sensitivity to 5, 4, 3, and 1 non–β-lactam antibiotics was observed in 1 (5.56%), 3 (16.67%), 5 (27.78%) and 6 (33.33%) MSSA isolates, respectively. Despite these findings, our study revealed less resistance in CA MRSA to rifampin, mupirocin, gentamicin, and trimethoprim-sulfamethoxazole. This is consistent with other studies that indicated CA MRSA strains are less resistant to non–β-lactam antibiotics. However, multidrug resistance between CA MRSA and MSSA isolates has obviously developed. Easy access to antibiotics without doctors’ prescriptions may cause development of such resistance among staphylococcal isolates in our region.

Noteworthy is the sensitivity of all the isolates (except 1) to rifampin. This reduction may partly relate to the decreased prescription of rifampin by clinicians for long periods in our region. Although this antibiotic is rarely used as a single agent to treat CA MRSA infection because resistance can occur rapidly; however, it can be used synergistically with other antibiotics like vancomycin (in this study, all the isolates were sensitive) for treatment of serious S aureus infection, such as endocarditis, as recommended previously. Mupirocin is used to eliminate nasal colonization of S aureus, particularly MRSA. In this study, resistance to mupirocin (n = 6; 4.4%) was also low, and only 1 isolate was CA MRSA. Based on the 2014 CLSI criteria, none of the mupirocin-resistant isolates were considered as high-level resistance because all isolates exhibited zones of inhibition. Therefore, mupirocin can be used for decreasing nasal carriage if necessary.

Table 2: Antibiotic susceptibility patterns of Staphylococcus aureus isolates from nasal carriage

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>MSSA</th>
<th>MRSA</th>
<th>Total no. resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>I</td>
<td>R</td>
</tr>
<tr>
<td>Penicillin</td>
<td>9 (7.6)</td>
<td>0 (0)</td>
<td>110 (92.4)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>118 (99.2)</td>
<td>0 (0)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>90 (75.6)</td>
<td>2 (1.7)</td>
<td>27 (22.7)</td>
</tr>
<tr>
<td>Rifampin</td>
<td>118 (99.2)</td>
<td>0 (0)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Mupirocin</td>
<td>114 (95.8)</td>
<td>0 (0)</td>
<td>5 (4.2)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>99 (83.2)</td>
<td>14 (11.8)</td>
<td>6 (5.0)</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>96 (80.7)</td>
<td>1 (0.8)</td>
<td>22 (18.5)</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>106 (89.1)</td>
<td>0 (0)</td>
<td>13 (10.9)</td>
</tr>
</tbody>
</table>

NOTE. Values are n (%).

Table 3: Distribution of subtypes of SCCmec type IV among isolates

<table>
<thead>
<tr>
<th>Subtypes of SCCmec type IV</th>
<th>Isolates from students</th>
<th>NMU</th>
<th>MU</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVA</td>
<td>6 (42.86)</td>
<td>3 (21.43)</td>
<td>9 (64.29)</td>
<td></td>
</tr>
<tr>
<td>IVB</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>IVc</td>
<td>3 (21.43)</td>
<td>1 (7.14)</td>
<td>4 (28.57)</td>
<td></td>
</tr>
<tr>
<td>IVd</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>IVb</td>
<td>1 (7.14)</td>
<td>0 (0)</td>
<td>1 (7.14)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE. Values are n (%).

MU, medical university; NMU, nonmedical university; SCCmec, staphylococcal cassette chromosome mec.
or less frequency of the pvl gene among MRSA isolates have also been reported in other studies from different parts of Iran.29,30

CONCLUSIONS

The relatively high frequency of S aureus nasal carriage, especially considering that some isolates were CA MRSA, is a reason for concern. Susceptibility patterns of the isolates demonstrated that multidrug resistance is emerging among CA MRSA, and individuals who are harboring these isolates can act as reservoirs. Most MRSA isolates had SCCmec type IV, and few harbored type V (the types tend to be highly mobile); the transfer of such MRSA strains from carriers to other individuals in crowded living conditions, such as dormitories, may act as a risk factor for outbreaks of CA MRSA and is a serious threat for the study groups. The continuous surveillance of CA MRSA is essential to prevent transmission of S aureus from the infected carriers to others and also to apply effective therapeutic options for treatment of them.

Acknowledgments

We thank all the students participating in the research. We also thank Dr Mohammad Ahangarzadeh Rezaee for providing reference strains with known SCCmec types and those pvl positive.

References