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Protective effects of Helicobacter pylori against
gastroesophageal reflux disease may be due to a
neuroimmunological anti-inflammatory mechanism

Shahram Shahabi1, Yousef Rasmi2, Nima Hosseini Jazani1 and Zuhair Muhammad Hassan3

There is some evidence that Helicobacter pylori infection has a protective effect against gastroesophageal reflux disease (GORD)

and its complications such as Barrett’s oesophagus and oesophageal adenocarcinoma. In this paper, we propose that a

neuroimmunological mechanism is responsible for the protective effect of H. pylori on GORD. H. pylori infection of the gastric

mucosa induces a T helper1-like immune response and production of pro-inflammatory cytokines. These cytokines can inhibit

local sympathetic tone, whereas they increase systemic sympathetic tone. Increased sympathetic tone can induce an anti-

inflammatory milieu, which in turn can inhibit inflammation in the oesophagus and lower oesophageal sphincter (LOS).

Furthermore, H. pylori infection may stimulate the cholinergic anti-inflammatory pathway. It has been suggested that reflux-

induced oesophageal inflammation plays an important role in the pathogenesis of reflux oesophagitis. Reduction of oesophageal

inflammation by increased systemic sympathetic tone and vagal activity may lead to a decrease in reflux-induced oesophageal

injury and LOS dysfunction in GORD.
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Gastroesophageal reflux disease (GORD) is a common disease entity
in which gastric juice gains access to the oesophagus via an incompe-
tent lower oesophageal sphincter (LOS).1,2 The presence of refluxed
materials induces different grades of oesophageal damage, ranging
from low- to high-grade oesophagitis.2 GORD is a risk factor
for oesophageal adenocarcinoma, a rare cancer whose incidence
is increasing.3 The most common factor in the aetiology of GORD
is disturbed LOS function. Dysfunction of the LOS occurs via one of
several mechanisms, the most common being an increase in the
number of transient LOS relaxations, and the second most common
being a permanent decrease in LOS pressure.4

Oesophageal acid loads seem to be one of the major causes of
oesophageal mucosal damage.2 However, the severity of reflux oeso-
phagitis cannot be accurately predicted simply on the basis of acid
exposure, suggesting that other damaging factors or, possibly,
impaired mucosal resistance, are also involved in reflux oesophagitis.2

The importance of mucosal resistance and oxidative stress in the
pathogenesis of GORD has been shown.2,5–7

Helicobacter pylori infection is recognized to be the most important
acquired factor in the aetiology of ulcers of the stomach and
duodenum.8 The type of inflammation induced by H. pylori is
commonly termed ‘chronic active inflammation’. In H. pylori-induced
inflammation, the antrum is consistently involved, whereas inflam-

mation in the acid-secreting gastric body and fundus is more variable.9

In spite of some contradictory reports, there is substantial evidence
that H. pylori infection, especially infection with virulent strains of H.
pylori, has a protective effect against GORD and its complications such
as Barrett’s oesophagus and oesophageal adenocarcinoma.8,10–13

To date, the mechanisms that have been suggested for the protective
effect of H. pylori against gastroesophageal reflux include an increase
in the production of ammonia, hypochlorhydria associated with
gastric atrophy and increased production of protective prostaglandins,
change in lifestyle and weight gain and consumption of acid-reducing
agents during H. pylori infection.14 In addition, Budzynski et al.15

suggested that H. pylori-induced greater autonomic nervous system
activity may explain the decrease in the number of gastroesophageal
reflux episodes in patients infected with H. pylori.

The present paper proposes a neuroimmunological mechanism for
the protective effects of H. pylori against GORD.

HYPOTHESIS

H. pylori infection of the gastric mucosa induces a T helper1 (Th1)-
like immune response and production of the pro-inflammatory
cytokines tumour necrosis factor a (TNF-a), interleukin (IL) 1b,
IL-6 and IL-816 (Figure 1). Any immune challenge that threatens the
stability of the internal milieu can be regarded as a stressor, that is
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under certain conditions; an immune response can activate the stress
system.

The sympathetic nervous system (SNS) is characterized by a
continuous discharge of neural activity, the so-called sympathetic
tone. It seems that an inflammatory/immune response to components
of H. pylori may actually increase sympathetic tone, as other stressors
or stimuli do.17 It has been shown that interferon a, tumour necrosis
factor-a, IL-1 (especially IL-1b) and IL-6 can signal the brain to trigger
the activation of both SNS and hypothalamus–pituitary–adrenal axis
through a complex corticotropin-releasing hormone-dependent path-
way.17 Thus, the SNS, similar to hypothalamus–pituitary–adrenal axis,
is involved also in a long feedback loop between lymphoid organs and
central nervous system. The afferent limb of this loop seems to be
operated by blood-borne cytokines, which activate the central com-
ponents of the stress system via circulation or through the vagus nerve
afferents. The efferent loop consists of the SNS, its projections to
different organs and the release of norepinephrine from the sympa-
thetic nerve terminals in these organs.17 Although the above-men-
tioned cytokines trigger centrally the sympathetic output, which
results in an increase of norepinephrine turn over in several organs,
it has been shown that they inhibit SNS activation in the place of
administration, so the local effect of these cytokines might be
absolutely different.17 Therefore, the pro-inflammatory cytokines
produced by inflammatory response against H. pylori can inhibit
local sympathetic tone, whereas they increase systemic sympathetic
tone17 (Figure 1). Since antigen-presenting cells carry H. pylori
antigens to secondary lymphoid tissues, where they activate naive
T lymphocytes,18 there is a Th1-type and pro-inflammatory milieu
both at the sites of infection and in the secondary lymphoid tissues to
which H. pylori antigens are carried. Therefore, during infection by
H. pylori, there is a reduction in sympathetic tone at the infection site
(gastric wall) and in secondary lymphoid tissues, accompanied by an
increase in tone elsewhere, including the LOS.

Increased sympathetic tone can induce an anti-inflammatory
milieu17 in the tissues (including the oesophagus and the LOS),

with the exception of the sites of H. pylori infection and secondary
lymphoid tissues through following mechanisms:

There are many indications showing that norepinephrine and
epinephrine, inhibit the production of type 1/pro-inflammatory
cytokines, such as IL-12, tumour necrosis factor-a and IFN-g by
antigen-presenting cells and Th1 cells through stimulation of the
b2-adrenoreceptor–cAMP–protein kinase A pathway, whereas they
stimulate the production of anti-inflammatory cytokines such as
IL-10 and transforming growth factor-b. Also it has been shown
that stimulation of SNS can induce regulatory (suppressor) T lym-
phocytes and attenuate immune responses. Different adrenoreceptors
are known as molecules responsible for the induction of regulatory T
lymphocytes and increasing the T regulatory (suppressor) vs T helper
and T regulatory (suppressor) vs T cytolytic ratios.19,20 Through
above-mentioned mechanisms, endogenous catecholamines may act
systemically to cause a selective suppression of pro-inflammatory
responses, and result in a dominance of anti-inflammatory
responses.17 Therefore, the systemic increased sympathetic tone can
inhibit inflammation in all tissues (including the oesophagus and the
LOS), with the exception of the sites of H. pylori infection and
secondary lymphoid tissues, where there is a decreased sympathetic
tone (Figure 1).

It has been suggested that reflux-induced oesophageal inflammation
plays an important role in the pathogenesis of reflux oesophagitis. It
has been shown that pro-inflammatory cytokines induce neutrophil
accumulation and oxygen radical-mediated tissue damage.21 In addi-
tion, recent evidence suggests that pro-inflammatory cytokines, such
as IL-1b and IL-6, may be implicated in dysfunction of the LOS,
because they reduce oesophageal muscle contractility.22 Thus, reduc-
tion of oesophageal inflammation by H. pylori-induced increased
systemic sympathetic tone may lead to a decrease in reflux-induced
oesophageal injury and LOS dysfunction in GORD (Figure 1). More-
over, H. pylori-induced increased sympathetic tone may inhibit the
development of a non-pre-existing GORD by means of the following
mechanism. Because pro-inflammatory cytokines reduce oesophageal

Helicobacter pylori infection of gastric mucosa

Local production of pro-inflammatory cytokines

Increase in systemic sympathetic tone
and

stimulation of cholinergic anti-inflammatory pathway

Reduction of reflux induced oesophageal inflammation

Inhibition of neutrophil
accumulation and oxygen radical-

mediated tissue damage

Increase in oesophageal muscle
contractility

1- Decrease in reflux-induced oesophageal injury and LOS dysfunction of 
    GORD

2- Inhibition of development of a non-pre-existing GORD

Figure 1 An algorithm which shows the proposed mechanism for the protective effects of H. pylori infection against GORD.
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muscle contractility, it seems that when the refluxed gastric juice
comes into contact with the oesophageal mucosa, induction of a pro-
inflammatory process in the oesophageal wall can intensify LOS
dysfunction and promote the development of GORD. Inhibiting the
induction of the pro-inflammatory process by increasing sympathetic
tone may block this positive feedback and prevent the development of
GORD. Thus, the rate of GORD development will be lower in persons
with H. pylori infection than in those without this infection.11

Furthermore, this could be the mechanism by which slight decreases
in sympathetic function in patients with GORD23 correlate with the
pathogenesis of this disease.

In addition to stimulating the SNS, H. pylori infection may also
stimulate the cholinergic anti-inflammatory pathway. H. pylori-
derived lipopolysaccharide and H. pylori-induced pro-inflammatory
cytokines may stimulate vagal sensory neurons (Figure 1), which in
turn may stimulate vagal efferent neurons, resulting in a decrease in
the production of pro-inflammatory cytokines and inhibition of
inflammation in the visceral organs, including the oesophagus24

(Figure 1). The above-mentioned mechanisms may be responsible
for the protection against GORD that results from inhibition of the
pro-inflammatory process.

DISCUSSION

According to the suggested hypothesis, the protective effects of H.
pylori infection against GORD can be attributed to the anti-inflam-
matory effects exerted by the increase in sympathetic tone and
stimulation of the cholinergic anti-inflammatory pathway due to H.
pylori-induced inflammation.

It has been shown that infection with the more virulent, cytotoxin-
associated gene A (cagA)-positive strains of H. pylori and pro-
inflammatory genotypes of the IL-1b gene are independently
associated with protection against GORD.25 Both of these factors
can be responsible for the induction of a more severe pro-inflamma-
tory immune response against H. pylori infection.25 It has been
suggested that the severe gastric inflammation caused by cagA-positive
strains and pro-inflammatory genotypes of the IL-1b gene leads to
gastric atrophy, and the resulting hypochlorhydria may protect against
GORD.25 The greater protection against GORD by cagA-positive
strains of H. pylori and pro-inflammatory genotypes of the IL-1b
gene can also be explained by our proposed hypothesis: the more
extensive the pro-inflammatory response to H. pylori infection, the
stronger the stimulation of the SNS and vagus nerve. Any increase in
the activation of the SNS and vagus nerve will lead to more efficient
inhibition of the inflammation in the oesophageal wall, resulting in
greater protection against GORD. The differences between the differ-
ent strains of H. pylori, as well as differences between different
populations in the induction of inflammatory responses against
H. pylori infection, may explain why some studies have not found
H. pylori to exert protective effects against GORD.26–29

Budzynski et al.’s15 finding that patients infected with H. pylori have
greater sympathetic and parasympathetic tone than H. pylori-negative
subjects, and their suggestion that the greater autonomic nervous
system activity may explain the protective effects of H. pylori infection
against GORD, may support this hypothesis.

According to the present hypothesis, H. pylori infection may have
protective effects against GORD because the pro-inflammatory
immune response plays an important role in both diseases. The
protective effects of H. pylori infection on multiple sclerosis and
Crohn’s disease (CD)30–34 two diseases for which pro-inflammatory
cytokines have a key role in their pathogenesis,35,36 may be due to the
proposed mechanism. Stimulation of the SNS and the cholinergic

anti-inflammatory pathway by H. pylori infection may lead to a
reduction in the production of pro-inflammatory cytokines and result
in alleviation of these autoimmune diseases. The relationships between
H. pylori infection and GORD, multiple sclerosis and CD, are similar
to the relationships between mycobacterial infection and some Th1-
type autoimmune diseases, including multiple sclerosis and experi-
mental autoimmune encephalomyelitis (an animal model for multiple
sclerosis). Both mycobacterial infection and the above-mentioned
autoimmune diseases induce Th1 immune responses and pro-inflam-
matory cytokines, but it has been shown that mycobacterial infection
alleviates the symptoms of these autoimmune diseases.37–41 We
previously hypothesized that the anti-inflammatory effects of myco-
bacterial infection-induced increased systemic sympathetic tone may
explain the modulation of these autoimmune diseases by mycobacte-
rial infection.37,38 Although, in the present article, we have proposed
that our hypothesis could explain the protective effects of H. pylori
infection against GORD, we believe that it is not the only mechanism
and that other mechanisms also play a role.
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