AAC Accepted Manuscript Posted Online 24 October 2016 Antimicrob. Agents Chemother. doi:10.1128/AAC.01106-16 Copyright © 2016, American Society for Microbiology. All Rights Reserved.

1 In Vitro Activities of Novel Azole Compounds (ATTAF-1 and ATTAF-2) Against

2 Fluconazole-Susceptible and -Resistant Isolates of Candida species

3

- 4 Hamed Fakhim^{a,b}, Saeed Emami^c, Afsane Vaezi^{a,b}, Seyedeh Mahdieh Hashemi^c, Leila Faeli^{a,b},
- 5 Kambiz Diba^d, Eric Dannaoui^e, Hamid Badali^{b, f}*

6

- 7 Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran^a;
- 8 Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University
- 9 of Medical Sciences, Sari, Iran^b; Department of Medicinal Chemistry and Pharmaceutical
- 10 Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences,

Downloaded from http://aac.asm.org/ on July 16, 2017 by guest

- 11 Sari, Iran^c; Cellular and Molecular Research Center, Urmia University of Medical Sciences,
- 12 Urmia, Iran^d; Université Paris-Descartes, Faculté de Médecine, APHP, Hôpital Européen
- 13 Georges Pompidou, Unité de Parasitologie-Mycologie, Service de Microbiologie, Paris, France^{e,}
- 14 Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran^f
- 15 *Corresponding authors: H. Badali, PhD Tel: +989128413720; E-mail: badalii@yahoo.com
- 16
- 17 **Running title:** Activities of Novel Azole Against *Candida* spp.
- 18 Keywords: In vitro susceptibility, triazole derivatives, Candida species

19

Downloaded from http://aac.asm.org/ on July 16, 2017 by guest

20	comparator antifungal agents against 52 clinical Candida isolates from 5 different species
21	were determined. Novel azole compounds had the lowest geometric mean MICs followed by
22	fluconazole. Moreover, combinations of these compounds with fluconazole exhibited
23	synergistic effects against fluconazole-susceptible (22 of 23), -susceptible dose dependent
24	(10 of 13) and -resistant (1 of 16) Candida isolates.
25	
26	
27	Word count text: 1495
28	Word count abstract: 74
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	

In vitro activities of two novel azole compounds (ATTAF-1 and ATTAF-2) and five

Candidiasis is a serious life-threatening infection, associated with significant morbidity and 39 mortality rates. The incidence of this infection has increased in recent years, especially among 40 41 immunocompromised patients (1, 2). Candida species are the fourth most common agent of 42 hospital-acquired candidemia (3-5). Guidelines for the management of candidiasis have recommended the use of azoles, polyenes, and echinocandins (6, 7). However, toxic effects of 43 44 amphotericin B and resistance to azoles and echinocandins in *Candida* species have recently 45 become a serious clinical challenge (8-10). Fluconazole is the most commonly used agent for systemic candidiasis, given its low toxicity, high solubility, and wide tissue distribution (11). In 46 addition, use of fluconazole for prophylaxis and treatment is thought to be a potential risk factor, 47 leading to the gradual development of azole-resistant species (12). Accordingly, there is an 48 49 urgent need for introducing a novel class of antifungal agents with potent activities and new 50 mechanisms of action to improve the management of *Candida* infections (13).

Downloaded from http://aac.asm.org/ on July 16, 2017 by guest

Replacement of one triazole ring in the fluconazole structure with other heterocyclic moieties 51 with the purpose of introducing and developing new antifungal agents has received particular 52 53 attention in medical chemistry. We previously designed and synthesized numerous triazole alcohols by replacing the 1,2,4-triazol-1-yl group in the fluconazole structure with 4-amino-5-54 55 aryl-3-mercapto-1,2,4-triazole motif (14,15). Since this newly introduced motif represented a new type of side chain in triazole alcohol antifungals, we focused on the structural refinement of 56 57 the primary lead and removed the amino group from the structure to obtain new entities, namely aryl-1,2,4-triazole-3-yl(thio) analogues of fluconazole (ATTAF). In particular, ATTAF-1 and 58 ATTAF-2 compounds (formerly 10h and 11h, respectively), containing (2,4-dichlorophenyl)-59

Antimicrobial Agents and

Chemotherapy

1,2,4-triazole-thiol moiety, were found to be potential agents against *Candida* species with no

60

significant cytotoxicity against HepG2 cell line (Figure 1) (15). Although ATTAF-1 and 61 62 ATTAF-2 are triazole alcohol-derived analogues, their increased antifungal activity in comparison with fluconazole might be attributed to the presence of (2,4-dichlorophenyl)-1,2,4-63 triazole-thiol scaffold as an additional pharmacophoric structure with a mechanism of action 64 distinct from fluconazole. Therefore, we aimed to describe the in vitro activity of ATTAF-1 and 65 66 ATTAF-2 in comparison with five clinically important antifungal drugs against fluconazolesusceptible and -resistant Candida isolates. Moreover, we investigated the combination of these 67 compounds with fluconazole. 68

Compounds ATTAF-1 and ATTAF-2 were synthesized and characterized according to our 69 70 previous study (15). Fluconazole (Pfizer, Groton, CT, USA), itraconazole (Janssen Research Foundation, Beerse, Belgium), voriconazole (Pfizer, Central Research, Sandwich, United 71 Kingdom), amphotericin B (Sigma, St. Louis, MO, USA), and anidulafungin (Pfizer) were 72 obtained as reagent-grade powders from the respective manufacturers and used for preparation of 73 74 the CLSI microdilution trays.

Fifty-two Candida isolates from five different species including, fluconazole-susceptible 75 76 (n=23), -susceptible dose dependent (n=13) and -resistant (n=16), according to the new CLSI 77 species-specific clinical breakpoints (CBPs) for fluconazole against Candida species (16), were obtained from the reference culture collection of the Invasive Fungi Research Center (IFRC), 78 Sari, Iran (Table 1). Isolates has been previously identified by sequencing of the ITS rDNA 79 region. Antifungal susceptibility testing was performed according to CLSI guidelines M27-A3 80

81	and M27-S4 documents (17, 18) after 24 h of incubation at 35°C. The antifungal agents were
82	prepared at a final concentration of 0.016–16 μ g/ml for amphotericin B, itraconazole and
83	voriconazole, 0.063–64 $\mu g/ml$ for fluconazole, ATTAF-1 and ATTAF-2 and 0.008–8 $\mu g/ml$ for
84	anidula fungin. The MIC endpoint was defined as 100% of inhibition for amphoteric in B and $>$
85	50% of inhibition for the other drugs. For calculations, high off-scale MICs were raised to the
86	next log ₂ -dilution step, while the low off-scale MICs were left unchanged (19, 20). Differences
87	of the mean values were determined by using Kruskal-Wallis and Mann-Whitney Test with the
88	statistical SPSS package (version 7.0). P values of < 0.05 were considered statistically
89	significant. In addition, the interactions of ATTAF-1 and ATTAF-2 with fluconazole were
90	investigated using a microdilution checkerboard technique in 96-well microtitre plates (21). The
91	range of the concentration depended on the MIC results of each isolates, i.e., the maximum
92	concentration was twofold the MIC and then serial diluted. In vitro combination of fluconazole
93	with voriconazole against 11 Candida isolates from 5 different species (fluconazole -susceptible
94	(n=5), -susceptible dose dependent (n=3) and -resistant (n=3)) were chosen as controls the
95	interactions of newly synthesized azole compounds with fluconazole. To assess the interaction of
96	combinations of drugs, further analysis was conducted using the fractional inhibitory
97	concentration index (FICI). The interaction was defined as synergistic if the FICI was ≤ 0.5 ,
98	indifferent if $>0.5 - \leq 4.0$, and antagonistic if >4 (21).
99	Table 1 summarizes the MIC range, mode, geometric mean (GM) MIC, MIC_{50} , and MIC_{90}

- 100 of ATTAF-1 and ATTAF-2 and five comparators against 52 clinical *Candida* isolates from 5
- 101 different species. In terms of GM MICs, anidulafungin, followed by the newly synthesized azole

102	compounds, exhibited potent activity against all Candida isolates (n=52). Interestingly, the
103	widest range and highest MIC ₉₀ values for <i>C. albicans</i> against fluconazole were 0.5-128 μ g/ml
104	and 128 µg/ml, respectively. The GM MICs against C. albicans were 0.01, 0.21, 0.22, 0.25, 0.46,
105	0.74, and 2 μ g/ml for anidulafungin, ATTAF-1, ATTAF-2, voriconazole, itraconazole,
106	amphotericin B, and fluconazole, respectively. GM MICs of ATTAF-1 and ATTAF-2 were
107	lower than fluconazole against C. glabrata and MIC ₅₀ of ATTAF-1 (0.25 μ g/ml) was 5 log ₂ -
108	dilution steps less than fluconazole (8 μ g/ml). The checkerboard analysis of the tested
109	compounds is summarized in Table 2. FICI results revealed synergistic effects against
110	fluconazole-susceptible (22 of 23), -susceptible dose dependent (10 of 13) and -resistant (1 of
111	16) Candida isolates when ATTAF-1 and ATTAF-2 were combined with fluconazole. In
112	addition, no antagonistic effect was observed against Candida isolates with these combinations.
113	Remarkably, ATTAF-1 and ATTAF-2 were more active than fluconazole against C. albicans
114	isolates and showed synergistic activity against 16 (76.1%) isolates (Table 2). Moreover,
115	synergistic activity against C. glabrata, C. parapsilosis, C. krusei, and C. tropicalis was
116	observed in 5 (50%), 5 (62.5%), 4 (44.4%), and 4 (100%) strains, respectively. Overall, no
117	antagonistic effects were observed against Candida isolates with these combinations.
118	Remarkably combinations of fluconazole with voriconazole as controls revealed an unfavorable
119	antifungal effect against $11C$ and ida isolates with high FICI range $1.5 - 4$ in comparison with
120	0.25 - 2 and 0.31-2 FICI range for ATTAF1 and ATTAF2, respectively.
121	Based on the findings, there was no significant difference in the activity of ATTAF-1 and
122	ATTAF-2 against specific <i>Candida</i> isolates ($P > 0.05$).

123	Considering the advances in modern medicine, leading to the availability and indiscriminate
124	use of chemotherapeutic, immunosuppressive, and broad-spectrum antifungal agents, increased
125	incidence of severe candidiasis has been recently attributed to the large population of high-risk
126	individuals (1, 2). Although fluconazole is the drug of choice for prophylaxis and treatment of
127	candidiasis, prolonged use of this agent has contributed to the development of drug resistance in
128	Candida isolates (20). Accordingly, novel therapeutic strategies, such as combination therapy,
129	are essential for increasing the efficacy and reducing the toxicity of antifungal agents. Major
130	attempts have been made to develop potent and safe antifungal agents with unique mechanisms
131	of action (20). Fluconazole analogues with a triazole-modified scaffold display enhanced activity
132	against Candida and Cryptococcus species, compared to filamentous fungi (15, 22). In the
133	current study, ATTAF-1 and ATTAF-2 as two promising novel azole compounds revealed that
134	either used alone or in combination with fluconazole, could show potent activity against all
135	Candida species. In line with the present results, Shi et al. (23) and Ramírez et al. (24) showed
136	that the newly synthesized azole-based compounds were more active than fluconazole, and
137	combination of these compounds with fluconazole could exert synergistic effects. Moreover, Ji et
138	al. (25) synthesized triazole derivatives, based on the structure of lanosterol 14α -demethylase
139	(CYP51) and revealed that these compounds have better activity against C. albicans, compared
140	to fluconazole. ATTAF-1 and ATTAF-2 share general structural features with the triazole
141	alcohol class of antifungal agents, while exhibiting novel and distinct characteristics. In fact, the
142	increased antifungal potency of these compounds might be due to the secondary activities or
143	actions within Candida isolates, not shared by fluconazole. In previous studies, the mechanism
	7

Downloaded from http://aac.asm.org/ on July 16, 2017 by guest

144

145

146

147 derivatives have been precisely determined and established. Although our newly synthesized 148 azole compounds showed more potent antifungal activities compared to fluconazole, the involved mechanism of action might differ from fluconazole; moreover, synergistic activities 149 150 apparently did not have major potential significance since these interactions were observed 151 mostly for isolates that are non-resistant to fluconazole and the synergistic mechanisms remained 152 unclear. Therefore, we need to determine which subset of events and mechanisms is primarily responsible for the observed growth inhibition in the synergistic use of azole compounds. Further 153 154 analysis of the diversity between different compounds and fluconazole could elucidate the underlying mechanism of action. In conclusion, although ATTAF-1 and ATTAF-2 exhibited 155 potent activities against clinical Candida isolates, their effectiveness, alone or in combination 156 with fluconazole, in the treatment of Candida infection needs to be determined; in addition, the 157 158 underlying mechanism of action should be investigated.

of azole resistance, including decreased intracellular concentration of the target enzyme, changes

in the drug target, and increased production of lanosterol 14 α -demethylase, has been identified in

different Candida isolates (26). The mechanisms of action in azole compounds and their

159 Acknowledgments: This study was financially supported by a grant (nr: 2321) from the School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran which we gratefully 160 acknowledge. 161

Conflict of interest: No potential conflicts of interest. The authors alone are responsible for the 162 163 content and writing of the paper.

164 References

165 1. Guo F, Yang Y, Kang Y, Zang B, Cui W, Qin B, Qin Y, Fang Q, Qin T, Jiang D. 2013.
166 Invasive candidiasis in intensive care units in China: a multicentre prospective observational
167 study. J Antimicrob Chemother 68:1660-1668.

168 2. Hu L, Du X, Li T, Song Y, Zai S, Hu X, Zhang X, Li M. 2015. Genetic and phenotypic
169 characterization of *Candida albicans* strains isolated from infectious disease patients in
170 Shanghai. J Med Microbiol 64:74-83.

3. Pfaller MA, Messer SA, Moet GJ, Jones RN, Castanheira M. 2011. *Candida* bloodstream
infections: comparison of species distribution and resistance to echinocandin and azole
antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY
Antimicrobial Surveillance Program (2008–2009). Int J Antimicrob Agents 38:65-69.

Downloaded from http://aac.asm.org/ on July 16, 2017 by guest

4. Pfaller M, Diekema D. 2007. Epidemiology of invasive candidiasis: a persistent public health
problem. Clin Microbiol Rev 20:133-163.

5. Bergamasco M, Garnica M, Colombo A, Nucci M. 2013. Epidemiology of candidemia in
patients with hematologic malignancies and solid tumours in Brazil. Mycoses 56:256-263.

6. Cornely O, Bassetti M, Calandra T, Garbino J, Kullberg B, Lortholary O, Meersseman
W, Akova M, Arendrup M, Arikan-Akdagli S. 2012. ESCMID* guideline for the diagnosis
and management of Candida diseases 2012: non-neutropenic adult patients. Clin Infect Dis
182 18:19-37.

Antimicrobial Agents and

Chemotherapy

183

184

management of Candida diseases 2012: adults with haematological malignancies and after 185 186 haematopoietic stem cell transplantation (HCT). Clin Infect Dis 18:53-67. 8. Chandrasekar P. 2011. Management of invasive fungal infections: a role for polyenes. J 187 Antimicrob Chemother. 66:457-465. 188 189 9. Kothavade RJ, Kura MM, Valand AG, Panthaki MH. 2010. Candida tropicalis: its 190 prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol 59:873-880. 191

7. Ullmann A, Akova M, Herbrecht R, Viscoli C, Arendrup M, Arikan-Akdagli S, Bassetti

M, Bille J, Calandra T, Castagnola E. 2012. ESCMID* guideline for the diagnosis and

192 10. Beyda ND, Lewis RE, Garey KW. 2012. Echinocandin resistance in Candida species: mechanisms of reduced susceptibility and therapeutic approaches. Ann Pharmacother 46:1086-193 194 1096.

11. Brammer K, Farrow P, Faulkner J. 1990. Pharmacokinetics and tissue penetration of 195 196 fluconazole in humans. Rev. Infect Dis 12:S318-S326.

12. Rogers TR. 2006. Antifungal drug resistance: limited data, dramatic impact? Int J 197 Antimicrob Agents 27:7-11. 198

199 13. Shalini K, Kumar N, Drabu S, Sharma PK. 2011. Advances in synthetic approach to and 200 antifungal activity of triazoles. Beilstein. J. Org. Chem. 7:668-677.

14. Hashemi SM, Badali H, Faramarzi MA, Samadi N, Afsarian MH, Irannejad H, Emami S. 2015. Novel triazole alcohol antifungals derived from fluconazole: design, synthesis, and biological activity. Mol Divers 19:15-27. 15. Hashemi SM, Badali H, Irannejad H, Shokrzadeh M, Emami S. 2015. Synthesis and

biological evaluation of fluconazole analogs with triazole-modified scaffold as potent antifungal
agents. Bioorg Med Chem 23:1481-1491.

Pfaller MA, Diekema DJ. 2012. Progress in antifungal susceptibility testing of *Candida*spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to
2012. J Clin Microbiol 50:2846-56.

Downloaded from http://aac.asm.org/ on July 16, 2017 by guest

210

211 17. Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution
212 antifungal susceptibility testing of yeasts; approved standard-third edition, M27–A3. Wayne:
213 CLSI; 2008.

214 18. Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution
215 antifungal susceptibility testing of yeasts: fourth informational supplement M27-S4. Wayne:
216 CLSI; 2012.

217 18. Cuenca-Estrella M, Gomez-Lopez A, Alastruey-Izquierdo A, Bernal-Martinez L,
218 Cuesta I, Buitrago MJ, Rodriguez-Tudela JL. 2010. Comparison of the Vitek 2 antifungal
219 susceptibility system with the Clinical and Laboratory Standards Institute (CLSI) and European

11

Antimicrobial Agents and

Chemotherapy

Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution reference 220 methods and with the Sensititre YeastOne and Etest techniques for in vitro detection of 221 antifungal resistance in yeast isolates. J Clin Microbiol 48:1782-1786. 222

19. Pfaller MA, Watanabe N, Castanheira M, Messer SA, Jones RN. 2011. Pre-clinical 223 224 development of antifungal susceptibility test methods for the testing of the novel antifungal agent 225 E1210 versus Candida: comparison of CLSI and European Committee on Antimicrobial Susceptibility Testing methods. J Antimicrob Chemother 66:2581-2584. 226

227 20. Mane A, Vidhate P, Kusro C, Waman V, Saxena V, Kulkarni-Kale U, Risbud A. 2016. 228 Molecular mechanisms associated with Fluconazole resistance in clinical Candida albicans isolates from India. Mycoses 59:93-100. 229

21. Odds FC. 2003. Synergy, antagonism, and what the chequerboard puts between them. J 230 231 Antimicrob Chemother 52:1-1.24.

22. Babazadeh-Qazijahani M, Badali H, Irannejad H, Afsarian MH, Emami S. 2014. 232 233 Imidazolylchromanones containing non-benzylic oxime ethers: Synthesis and molecular modeling study of new azole antifungals selective against Cryptococcus gattii. Eur J Med Chem 234 235 **76:**264-273.

23. Shi C, Liu C, Liu J, Wang Y, Li J, Xiang M. 2015. Anti-Candida Activity of New Azole 236 Derivatives Alone and in Combination with Fluconazole. Mycopathologia 180:203-207. 237

238

239

2014.

5-dihydro-1H-pyrazoles and Their Antifungal Activity Alone and in Combination with 240 241 Commercial Antifungal Agents. Arch Pharm 347:566-575. 25. Ji D, Lu J, Lu B, Xin C, Mu J, Li J, Peng C, Bao X. 2013. Efficient synthesis and 242 antimicrobial activity of some novel S-β-d-glucosides of 5-aryl-1,2,4-triazole-3-thiones 243 derivatives. Bioorg. Med Chem Lett 23:1997-2000. 244 245 26. Gonçalves SS, Souza ACR, Chowdhary A, Meis JF, Colombo AL. 2016. Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses doi: 246 247 10.1111/myc.12469. 248

24. Ramírez J, Rodríguez MV, Quiroga J, Abonia R, Sortino M, Zacchino SA, Insuasty B.

Efficient Synthesis of Novel 3-Aryl-5-(4-chloro-2-morpholinothiazol-5-yl)-4,

249 Legends:

Figure 1. Chemical structures of fluconazole, ATTAF-1 and ATTAF-2 compounds 250

Table 1. In vitro susceptibilities of five antifungal drugs and two novel azole compounds 251 252 (ATTAF-1 and ATTAF-2) against 52 Candida isolates from five different species. MIC range,

253 geometric mean MIC, MIC₅₀, and MIC₉₀ values are expressed in µg/ml.

254 Table 2. Interactions between fluconazole and the novel compounds (ATTAF-1 and ATTAF-2) against Candida isolates 255

²⁵⁶

Table 1. In vitro susceptibilities of five antifungal drugs and two novel azole compounds (**ATTAF-1 and ATTAF-2**) against 52 *Candida* isolates from five different species. MIC range, geometric mean MIC, MIC₅₀, and MIC₉₀ values are expressed in µg/ml.

							MIC	s (µg/m	I)										
Strains (no.)	≤0.008	0.016	0.031	0.063	0.125	0.25	0.5	1	2	4	8	16	32	64	>64	Range	MIC ₅₀ /MIC ₉₀	Mode	G mean
drugs or compounds																			
C. albicans (n=21)																			
ATTAF-1			1	11	2	1	1	1	1		2	1				0.031-16	0.063/8	0.063	0.21
ATTAF-2				14	1	1		1	1			1	2			0.063-32	0.063/16	0.063	0.22
Fluconazole							8	5	1	4					3	0.5-128	1/128	0.5	2
Itraconazole				2		7	7	2	1	1	1					0.063-8	0.5/2	0.5	0.46
Voriconazole				2	6	8	2	1	2							0.063-2	0.25/1	0.25	0.25
Anidulafungin	11	8	1	1												0.008-0.063	0.008/0.016	0.008	0.01
Amphotericin B						1	11	5	4							0.25-2	0.5/2	0.5	0.74
C. glabrata (n=10)																			
ATTAF-1				1	3	4						1	1			0.063-32	0.25/32	0.25	0.5
ATTAF-2				5	1	1	1						1	1		0.063-64	0.125/64	0.063	0.35
Fluconazole									1	3	2				4	2-128	8/128	128	17.14
Itraconazole						1	4	2	1	2						0.25-4	1/4	0.5	0.93
Voriconazole					2	1	5		2							0.125-2	0.5/2	0.5	0.46
Anidulafungin	6	3	1													0.008-0.031	0.008/0.031	0.008	0.01
Amphotericin B			1	1	2	2	1	2	1							0.031-2	0.25/2	1	0.25

C. krusei (n=9)																			
ATTAF-1				1	1	4	4			1		1	1			0.063-16	ND	ND	ND
ATTAF-2			1	1			I	3	1					2		0.031-64	ND	ND	ND
Fluconazole									1	3	2	1			2	1-128	ND	ND	ND
Itraconazole					1	:	2	3	1				2			0.125-16	ND	ND	ND
Voriconazole					3		I	2	1		1	1				0.125-8	ND	ND	ND
Anidulafungin	6	1		1	1											0.008-0.125	ND	ND	ND
Amphotericin B				2	1	1	2	1	2	1						0.063-2	ND	ND	ND
C. parapsilosis (n=8)																			
ATTAF-1			3	2	2		I									0.031-0.25	ND	ND	ND
ATTAF-2			3		4		I									0.031-0.25	ND	ND	ND
Fluconazole								3	1	1	3					0.5-4	ND	ND	ND
Itraconazole				4	1	:	2	1								0.063-0.5	ND	ND	ND
Voriconazole			2	3	2			1								0.031-0.5	ND	ND	ND
Anidulafungin			1	7												0.031-0.063	ND	ND	ND
Amphotericin B	6	2														0.008-0.016	ND	ND	ND
C. tropicalis (n=4)																			
ATTAF-1				3	1											0.063-0.125	ND	ND	ND
ATTAF-2				3	1											0.063-0.125	ND	ND	ND
Fluconazole								2	1	1						0.5-2	ND	ND	ND
Itraconazole				2			I	1								0.063-0.5	ND	ND	ND
Voriconazole				2		1		1								0.063-0.5	ND	ND	ND
Anidulafungin	3	1														0.008-0.016	ND	ND	ND

Amphotericin B	2	1 1	0.063-0.5

Abbrevations: MIC₅₀ concentration at which 50 % of the isolates were inhibited, MIC₉₀ concentration at which 90 % of the isolates were inhibited, ND not determined,

ND

ND

ND

Numbers in boldfaces indicate the modal value.

		М	IC (µg/ml)	_		MIC (µg/ml)						
Species and isolate	FLC	ATTAF-1	FLC/ ATTAF-1	FICI/INT	FLC	ATTAF-2	FLC/ ATTAF-2	FICI/INT				
C. albicans (n=21)												
IFRC 25	0.5	0.063	0.031/0.016	0.31/SYN	0.5	0.125	0 125/0 031	0.5/SVN				
IFRC 27	0.5	0.063	0.063/0.016	0.37/SVN	0.5	0.063	0.063/0.016	0.37/SVN				
IFRC 37	0.5	0.063	0.063/0.016	0.37/SYN	0.5	0.005	0.125/0.031	0.37/SYN				
IFRC 600	0.5	0.063	0.031/0.016	0.31/SVN	0.5	0.063	0.031/0.016	0.31/SVN				
IFRC 604	0.5	0.063	0.031/0.016	0.25/SYN	0.5	0.063	0.016/0.016	0.28/ SYN				
IFRC 120	1	0.005	0.125/0.031	0.25/SYN	1	0.125	0.125/0.031	0.37/SYN				
IFRC 614	1	0.063	0.031/0.016	0.28/ SYN	1	0.125	0.063/0.016	0.19/ SYN				
IFRC 1055	1	0.063	0 25/0 016	0.5/ SYN	1	0.125	0.125/0.016	0.25/SYN				
IFRC 10	1	0.005	0.125/0.063	0.37/SYN	1	0.125	0.125/0.031	0.37/SYN				
IFRC 13	1	0.125	0.125/0.031	0.37/SYN	1	0.125	0.063/0.031	0.31/SYN				
IFRC 15	1	0.125	0.063/0.031	0.31/SYN	1	0.25	0.063/0.031	0.18/SYN				
IFRC 24	2	0.063	0.063/0.016	0.28/SYN	2	0.25	0.125/ 0.063	0.31/SYN				
IFRC 14	2	0.25	0.5/0.125	0.75/IND	2	0.125	0.25/0.063	0.63/IND				
IFRC 18	2	0.125	0 125/0 031	0.31/SYN	2	0.125	0 125/0 031	0.31/SYN				
IFRC 38	4	1	0.25/0.063	0.12/SYN	4	1	0.25/0.125	0.18/ SYN				
IFRC 26	4	0.5	0.5/0.063	0.25/SYN	4	0.125	0.25/0.031	0.31/SYN				
IFRC 603	4	1	1/ 0.5	0.75/ IND	4	4	2/2	1/ IND				
IFRC 616	4	0.25	0.063/0.063	0.26/ SYN	4	1	0.25/0.125	0.18/SYN				
IFRC 1260	>64	8	16/4	0.62/IND	>64	32	16/16	0.62/IND				
IFRC 1261	>64	16	16/16	1.12/IND	>64	32	16/16	0.62/IND				
IFRC 1262	>64	8	16/4	0.62/IND	>64	16	32/8	0.75/IND				
C. glabrata (n=10)	_				_							
IFRC 1276	2	0.125	0.125/0.031	0.31/SYN	2	0.125	0.5/0.031	0.5/ SYN				
IFRC 1274	4	0.25	1/0.031	0.37/SYN	4	0.5	1/0.063	0.37/SYN				
IFRC 1275	4	0.125	0.5/0.031	0.37/SYN	4	0.25	0.5/0.031	0.25/SYN				
IFRC 671	4	0.25	0.5/0.063	0.25/SYN	4	0.063	0.25/0.016	0.31/SYN				
IFRC 680	8	0.25	2/0.125	1.25/IND	8	0.063	2/0.063	1.25/IND				
IFRC 339	8	0.125	4/0.063	1/IND	8	0.063	4/0.063	1.25/IND				
IFRC 648	≥64	32	32/8	0.5/ SYN	≥64	64	32/16	0.5/ SYN				
IFRC 1063	≥64	16	64/16	1.5/IND	≥64	16	64/16	1.5/IND				
IFRC 1065	≥64	32	64/8	0.72/IND	≥64	32	32/16	0.72/IND				
IFRC 704	≥64	16	64/16	1.5/IND	≥64	16	64/16	1.5/IND				
C. krusei (n=9)												
IFRC 1251	4	0.125	1/0.031	0.5/ SYN	4	0.25	1/0.031	0.37/SYN				
IFRC 1052	4	0.25	1/0.031	0.37/SYN	4	0.5	1/0.063	0.37/SYN				
IFRC 1058	4	1	1/0.125	0.37/SYN	4	1	1/0.063	0.31/SYN				
IFRC 85	4	4	1/1	0.5/ SYN	4	2	0.5/0.125	0.18/SYN				
IFRC 1013	4	4	1/2	0.75/IND	4	4	1/2	0.75/IND				
IFRC 1012	4	1	1/0.5	0.75/IND	4	2	1/1	0.75/IND				
IFRC 1014	16	4	4/2	0.75/IND	16	2	4/1	0.75/IND				
IFRC 1280	≥64	8	32/4	0.72/IND	≥64	64	64/64	1.5/IND				
IFRC 1281	≥64	16	32/16	1.25/IND	≥64	64	64/64	1.5/IND				
C. parapsilosis (n=8)												
IFRC 1015	0.5	0.125	0.031/0.031	0.31/SYN	0.5	0.125	0.125/0.031	0.5/SYN				
IFRC 1269	0.5	0.125	0.031/0.031	0.31/SYN	0.5	0.125	0.063/0.031	0.37/SYN				
IFRC 1270	0.5	0.125	0.031/0.031	0.31/SYN	0.5	0.125	0.125/0.031	0.5/ SYN				
IFRC 1271	1	0.25	0.125/0.031	0.25/SYN	1	0.25	0.25/0.031	0.37/SYN				
IFRC 1059	2	0.125	0.25/0.031	0.37/SYN	2	0.25	0.5/0.063	0.5/ SYN				
IFRC 261	4	0.5	2/0.25	I/IND	4	0.5	2/0.125	0.75/IND				
IFRC 1017	4	0.125	4/0.125	2/IND	4	0.25	4/0.25	2/IND				
IFKC 1016	4	0.25	2/0.125	1/IND	4	0.5	4/0.5	2/IND				
C. tropicalis (n=4)	0.5	0.125	0.062/0.021	0.27/03231	0.5	0.125	0.062/0.021	0.27/03/21				
IFRC 32	0.5	0.125	0.003/0.031	0.37/SYN	0.5	0.125	0.003/0.031	0.5//SYN				
IFRC 1000 IFRC 1057	1	0.125	0.125/0.051	0.37/SYN	1	0.125	0.25/0.051	0.5/SYN				
IFRC 1057 IEBC 1059	2	0.23	0.3/0.003	0.5//SIN	2	0.23	0.3/0.003	0.3/ SIN				

Downloaded from http://aac.asm.org/ on July 16, 2017 by guest

Table 2. Interactions between novel compounds (ATTAF-1 and ATTAF-2) and fluconazole against Candida isolates

FLC Fluconazole; FICI Fractional Inhibitory Concentration Index; IND Indifference; SYN synergy; MIC minimal inhibitory concentration; INT

interpretation; No number of isolates