Evaluation of Cytogenetic Alterations in Peripheral Blood Lymphocytes of Esophageal Cancer Patients Treated with Radiotherapy or Chemoradiotherapy using Cytokinesis-Blocked Micronucleus Assay

Soraya Emamgholizadeh Minaei1, Hossein Mozdarani2, Morteza Motazakker3, Mohsen Mansouri4, and Seyed Mahmoud R. Aghamiri5

1 Department of Radiology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
3 Department of Clinical Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
4 Department of Radiotherapy, Omid Center, Urmia, Iran
5 Department of Radiation Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Received: 07 May 2014; Accepted: 1 Dec. 2014

Abstract- The effects of combined radiotherapy (RT) and chemotherapy in the severity of cytogenetic alterations expressed as micronucleus (MN) in peripheral blood lymphocytes of patients treated for esophageal cancer was evaluated. To do this, blood was obtained from 23 and 15 esophageal cancer patients scheduled for chemo-radiotherapy and RT alone, respectively, before, during, and after treatment. Blood samples were cultured in RPMI-1640 complete medium containing 1% phytohemagglutinin and incubated in a CO2 incubator. Cytochalasin-B was added to the cultures at a final concentration of 5 μg/ml. Finally, harvesting, slide making, and analysis were performed according to standard procedures. Results indicate that there was no significant difference between the frequencies of MN in lymphocytes of individuals before being treated with RT alone or chemo-radiotherapy. In the middle of treatment, (after 12 fractions of RT) the frequency of MN increased significantly compared with their concurrent pre-treatment samples in both groups (four-fold). However, the frequency of MN observed for RT patients was not significantly different with those received chemo- and radiotherapy. At the end of treatment, (after 24 fractions of radiotherapy) an increase in the MN frequency was observed for chemo-radiation group significantly higher than RT group (P=0.022). Mild increase in MN frequency in lymphocytes of patients receiving chemoradiation only after the completion of treatment course might be indicative of resistance induced by chemotherapeutics to the clastogenic effects of radiation. Therefore, using these agents repeatedly for cancer treatment in combination with radiation might not cause severe adverse biological effects in normal tissues.

© 2015 Tehran University of Medical Sciences. All rights reserved.

Keywords: Esophageal cancer; Lymphocytes; Micronuclei; Radiotherapy; Chemotherapy

Introduction

Esophageal cancer is the eighth most common cancer worldwide, but it is the sixth most common cause of death from cancer, so esophageal carcinoma is a highly virulent disease (1). There are various treatment methods for esophageal cancer, such as surgery, chemotherapy, radiotherapy and different kinds of combined-modality therapies, but clinical outcome of esophageal cancer is poor. Surgery is the preferred and standard treatment for this cancer (2,3). For patients who are not a candidate for surgical resection, combined-modality therapy (chemoradiation) has better results (2-4).

Several studies have indicated various advantages for chemoradiation treatment (combined chemotherapy and radiotherapy) as compared with radiotherapy or chemotherapy alone (5-10). Because combined chemotherapy drugs and radiation has additive and synergism effects in the killing of cancer cells (11,12), so treatment outcome will be better, but combined treatment also has disadvantages. It is more toxic to
normal tissues as compared with other treatment methods (5,7,9,13,14), because its performance is not restricted to malignant cells. Radiotherapy and chemotherapy can cause DNA damage in normal cells, misrepaired, or unrepaired double-strand breaks in DNA lead to chromosomal breaks. As a result patients experience early and late effects in normal tissue during the therapy (15-17). However, there are experimental evidence showing the hormesis induced by chemotherapeutics might reduce the clastogenic effects of radiation in non-target tissues such as bone marrow (18,19).

Cytogenetic techniques can assess patient's complications during the therapy and used for detecting individuals (patient or healthy) with intrinsic sensitivity. Because there is an association between chromosome abnormalities and the risk of developing cancer (20) cytogenetic bioindicators can be used as a cancer predictive assay (21-26).

For evaluation of chromosome abnormalities in peripheral blood lymphocytes (PBL) of esophageal cancer patients, we used cytokinesis-block micronucleus (CBMN) assay. The CBMN assay is a mutagenic test system for detection of the formation of small membrane-bound DNA fragments (i.e. micronuclei in the cytoplasm of interphase cells) induced by chemical and physical agents. These micronuclei may originate from acentric fragments (chromosome fragments lacking a centromere) or whole chromosomes which are unable to migrate with the rest of the chromosomes during the anaphase of cell division (22,27,28,29). CBMN assay is a simple, reliable, sensitive, rapid and low-cost cytogenetic test (30,31).

The aim of the present study was to evaluate the possible side effects of combined radiotherapy and chemotherapy in peripheral blood lymphocytes of esophageal cancer patients. Several studies have assessed chromosome abnormalities and DNA damages induced by radiotherapy and chemotherapy alone in PBL of cancer patients (especially breast cancer) (11,16,22,27,28,30,32-39), but less attention has been made to the side effects of chemoradiation treatment of esophageal cancer patients.

Materials and Methods

Patients

Two groups of esophageal cancer patients were investigated. The first group consisted of 23 patients, including 12 men and 11 women from 42 to 89 years old (66.52 ± 12.075), scheduled for treatment with chemoradiotherapy. This group received chemotherapy drugs (cisplatin, 20 mg/m² and 5-FU, 300mg/m³) once a week 30 minutes to one hour before radiotherapy. Radiotherapy of these patients was done using a linear accelerator (Siemens, Primus, Multi-energy system) with a daily dose was 180 cGy at a dose rate of 200 cGy/min (five fractions per week). The second group comprised 15 patients, including 7 men and 8 women from 51 to 84 years old (70.07 ± 11.54) that were treated with radiotherapy alone with similar irradiation procedure described for the first group. The study was approved by the Ethics Committee of Urmia University of Medical Sciences, and patients gave their consent for blood donation and took part in the study voluntarily.

Blood sample collection

Blood sample (3-4 ml) from each patient was collected in heparinized vacutainers via venipuncture, during three stages of treatments; i.e., before initiation of chemotherapy and radiotherapy, during therapy after 12 fractions of RT (21.6 Gy) and finally at the end of treatment after 24 fractions of RT (43.2 Gy).

Lymphocyte culture for CBMN assay

Lymphocyte culture was initiated by addition of 0.5 ml of whole blood to 4.5 ml RPMI-1640 medium containing L-glutamine and 15% fetal bovine serum (FBS) (Gibco). The duplicate culture was set for each patient. Lymphocytes were stimulated with 1% phytohaemagglutinin (PHA) (Gibco) and then samples were incubated in a CO₂ incubator at 37°C. Forty-four hours after the initiation of culture, cytochalasin-B (Sigma) was added to yield at a final concentration of 5μg/ml. Twenty-eight hours later cells were harvested by centrifugation at 1000 rpm for 10 minutes. The cells were subjected to hypotonic treatment (0.075M, KCl) for 2min, centrifuged and fixed in fresh fixation solution (Methanol and Acetic acid 1:6 v/v). Fixation step was repeated twice after 20min at room temperature. After the last centrifugation, cells were re-suspended in a small volume of fixative and dropped onto pre-cleaned slides. Then slides were stained for 20min in 10% Giemsa solution.

One thousand binucleated lymphocyte cells were evaluated by light microscope (magnification 400×) for each sample, and the frequency of MN was recorded except for those samples obtained after the completion of chemoradiotherapy in which the number of assessed binuclei cells was less. The scoring criteria were those indicated by Fenech (29).
Results

Patients’ demography and detailed statistical data obtained for each individual in the two groups are summarized in Table 1.

Table 1. Alteration in the frequency of MN in peripheral blood lymphocytes of esophageal cancer patients in relation to treatment modality and received radiation dose.

<table>
<thead>
<tr>
<th>Patient ID no.</th>
<th>Age</th>
<th>Sex</th>
<th>Before treatment</th>
<th>After 12 irradiation fraction</th>
<th>After 24 irradiation fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>MN frequency</td>
<td>MN percentage</td>
<td>B</td>
<td>MN frequency</td>
</tr>
<tr>
<td>01</td>
<td>M</td>
<td>1000 53</td>
<td>5.3% 1000 347</td>
<td>34.7%</td>
<td>423 237</td>
</tr>
<tr>
<td>02</td>
<td>M</td>
<td>1000 72</td>
<td>7.2% 1000 147</td>
<td>26.53%</td>
<td>500 175</td>
</tr>
<tr>
<td>03</td>
<td>M</td>
<td>1000 73</td>
<td>7.3% 1000 209</td>
<td>20.9%</td>
<td>1000 263</td>
</tr>
<tr>
<td>04</td>
<td>F</td>
<td>1000 40</td>
<td>4% 1000 191</td>
<td>23.87%</td>
<td>758 225</td>
</tr>
<tr>
<td>05</td>
<td>M</td>
<td>1000 74</td>
<td>7.4% 1000 224</td>
<td>32%</td>
<td>500 175</td>
</tr>
<tr>
<td>06</td>
<td>F</td>
<td>1000 102</td>
<td>10.2% 923 244</td>
<td>26.44%</td>
<td>142 45</td>
</tr>
<tr>
<td>07</td>
<td>F</td>
<td>1000 69</td>
<td>6.9% 1000 213</td>
<td>21.3%</td>
<td>1000 295</td>
</tr>
<tr>
<td>08</td>
<td>M</td>
<td>502 23</td>
<td>4.58% 241 44</td>
<td>18.26%</td>
<td>300 105</td>
</tr>
<tr>
<td>09</td>
<td>F</td>
<td>1000 39</td>
<td>3.9% 1000 201</td>
<td>20.1%</td>
<td>1000 225</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>1000 32</td>
<td>3.2% 1000 289</td>
<td>28.9%</td>
<td>1000 417</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>1000 33</td>
<td>3.3% 1000 250</td>
<td>25%</td>
<td>1000 327</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>1000 25</td>
<td>2.5% 1000 247</td>
<td>24.7%</td>
<td>1000 352</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>1000 43</td>
<td>4.3% 1000 300</td>
<td>30%</td>
<td>1000 527</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>1000 27</td>
<td>2.7% 663 269</td>
<td>40.57%</td>
<td>486 163</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>1000 69</td>
<td>6.9% 291 64</td>
<td>21.99%</td>
<td>136 42</td>
</tr>
</tbody>
</table>

Mean(%)±S.D 70.07±11.55 5.31%±2.22 26.35%±6.05 35.03%±8.98

In the chemoradiation group, the mean spontaneous frequency of micronuclei in the pre-treatment stage (0Gy) was 61.3 per one thousand binucleate lymphocyte cells (6.13% ± 1.56). In the radiotherapy alone, group the average frequency of micronuclei before the treatment was 53.1 per one thousand binucleate lymphocyte cells (5.31% ± 2.22). In both groups, there were inter-individual differences in the spontaneous frequency of micronuclei.

In the second stage, after 12 fractions (21.6Gy) the frequency of micronuclei increased significantly compared with their concurrent pre-treatment samples in
Micronuclei in lymphocytes of esophageal cancer patients

both groups (four-fold or more). After 12 fractions of treatment, the average frequency of micronuclei in lymphocytes was 26.95% ± 8.16 and 26.35% ± 6.05 in chemoradiation and radiotherapy alone groups, respectively. In comparison with radiotherapy alone treatment, chemoradiation group had a higher frequency of micronuclei, but the difference was not statistically significant ($P=0.929$).

The assessment of blood samples collected after 24 fractions (43.2Gy) confirmed an increase in the micronuclei frequency proportional to increasing radiation doses. In this stage, the mean frequency of micronuclei was 42.83% ± 13.12 and 35.03% ± 8.98 in chemoradiation and radiotherapy alone groups respectively, the difference was statistically significant ($P=0.022$) (Figure 1).

![Figure 1. Comparison of mean MN in radiotherapy alone and chemoradiation groups in three stages](image)

Some binucleate lymphocytes in the pre-treatment samples of cancer patients had two micronuclei (MN). However, subjects in the middle of therapy showed an increase in the rate of 2MN and 3MN in the binuclei cells and a few samples had binucleates with 5-7MN. A similar observation was made in the post-treatment samples.

In the chemoradiation group, age had no effect on the frequency of micronuclei, but in the radiotherapy alone group age affected the MN frequency mostly in the second and third stages, but had no effect in the first stage. Also, no gender effect was observed on the frequency of micronuclei in both groups.

Discussion

Radiotherapy and chemotherapy can cause DNA damage in normal cells not targeted for treatment, misrepaired, or unpaired double-strand breaks (DSB) in DNA lead to chromosomal breaks. These cytogenetic alterations in cells lead to cell death and improve the efficacy of radiotherapy or chemotherapy of tumors. However, there are also adverse side effects associated with each treatment modality especially radiosensitive tissues in bone marrow and circulating blood. These side effects often prevent the oncologists from delivering appropriate doses of drugs or radiation for better curability. As seen in Table 1 and Figure 1, high frequency of micronuclei was observed in lymphocytes of esophageal cancer patients before any treatment. Several studies have shown that DNA damage and chromosome abnormalities in PBL of cancer patients are higher than the healthy control group (11,16,22,27,28,31,35,38), indicating higher genome instability of cancer patients.

In the present study, the mean frequency of spontaneous micronuclei didn’t differ in both groups of cancer patient samples collected before the treatment. The analysis of micronuclei in both groups showed a wide inter-individual variation between patients. This finding agrees with other studies (16,17,28,33), which show inheritance differences and different radiosensitivity among individuals.

Samples that were collected in the middle of treatment in both groups showed a significant increasing in the micronuclei frequency as compared with their concurrent pre-treatment samples in both groups. This increase was four-fold, and for some patients was greater than fourteen-fold, that it is due to radiation effects. This increasing in the micronuclei frequency agrees with other investigations (28,30,36). Moreover, we found that chemoradiation group had a higher frequency of micronuclei than radiotherapy alone group (but the difference was not statistically significant). The assessment of blood samples collected at the end of treatment in both groups confirmed a significant elevation in the micronuclei frequency compared with their concurrent pre-treatment as well as mid-treatment
samples. Samples showed a six-fold or more increase in the micronuclei frequency. This elevation was proportional to increasing radiation doses. This finding is in agreement with other reported studies (28,30,36). Also, in this stage, the frequency of micronuclei in the chemoradiation group was significantly higher than radiotherapy alone. This result might be due to the accumulation of damages induced in the course of combined radiotherapy and chemotherapy. However, this increase was not so appreciable compared to those received radiotherapy alone. Previously, Mozdarani et al., (18,19) in experiments with laboratory animals have shown that chemotherapy with actinomycin D and bleomycin sulfate before the whole body or fractionated irradiation cause resistance or adaptation of bone marrow cells to radiation. Wolff et al., showed no significant increase in the frequency of micronuclei after chemotherapy in lymphocytes (30). Therefore, this mild effect of chemotherapeutics on lymphocytes might have triggered their repair machinery to tolerate higher doses of radiation.

Regarding the age and gender effect on MN formation, although there was generally no age and gender effect seen in the current study except in some patients receiving radiotherapy alone, there is no general agreement of the age or gender effect of MN formation. Some studies have reported the effect of age and gender on the frequency of micronuclei in the PBL of patients (27,41,42). However, other studies have showed no age and sex effect on the frequency of micronuclei (22,28,43-45).

In conclusion, high frequency of micronuclei in normal lymphocytes was seen after completion of the treatment course but not much higher than those induced by radiation alone.

Acknowledgment

The authors would like to thank the staff of radiotherapy department at Omid center in Urmia and Mr. Mahmoudzadeh from Novin Medical Radiation Institute, in Tehran for his technical assistance.

References

19. Mozdarani H, Saberi AH. Induction of cytogenetic...
Micronuclei in lymphocytes of esophageal cancer patients

adaptivresponse of mouse bone marrow cells to radiation by therapeutic doses of bleomycin sulfate and actinomycin D as assayed by the micronucleus test. Cancer Letters 1994;78(1-3):141-50.

