
Classification of Breast Tumors Using
Sonographic Texture Analysis

reast cancer may be considered the most common type of
cancer in women from both developed and developing
countries. According to a scientific report, it is the one of

the most common causes of death in women in the United States,
after lung and bronchial cancers.1 To increase treatment options
and decrease the death rate, early detection and diagnosis of breast
cancer are very critical issues. Early detection requires an accurate
and reliable diagnostic procedure.2,3 At present, breast cancer is
detected by a combined approach, including biopsy, physical exami-
nation, and imaging.4,5 In general, breast cancer should be patholog-
ically proven before any treatment decision is made. Although biopsy
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Objectives—The purpose of this study was to evaluate a computer-aided diagnostic
system with texture analysis to improve radiologists’ accuracy in identification of breast
tumors as malignant or benign.

Methods—The database included 20 benign and 12 malignant tumors. We extracted 300
statistical texture features as descriptors for each selected region of interest in 3 normal-
ization schemes (default, μ – 3σ, and μ + 3σ, where μ and σwere the mean value and
standard deviation, respectively, of the gray-level intensity and 1%–99%). Then features
determined by the Fisher coefficient and the lowest probability of classification error +
average correlation coefficient yielded the 10 best and most effective features. We analyzed
these features under 2 standardization states (standard and nonstandard). For texture
analysis of the breast tumors, we applied principle component, linear discriminant, and
nonlinear discriminant analyses. First–nearest neighbor classification was performed for
the features resulting from the principle component and linear discriminant analyses.
Nonlinear discriminant analysis features were classified by an artificial neural network.
Receiver operating characteristic curve analysis was used for examining the performance
of the texture analysis methods.

Results—Standard feature parameters extracted by the Fisher coefficient under the default
and 3σnormalization schemes via nonlinear discriminant analysis showed high perform-
ance for discrimination between benign and malignant tumors, with sensitivity of 94.28%,
specificity of 100%, accuracy of 97.80%, and an area under the receiver operating charac-
teristic curve of 0.9714.

Conclusions—Texture analysis is a reliable method and has the potential to be used
effectively for classification of benign and malignant tumors on breast sonography.

Key Words—breast tumors; breast ultrasound; computer-aided diagnosis; sonography;
texture analysis
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is the most common clinical approach to determine
whether a tumor is benign or malignant, it is painful, incurs
health care costs, and has the risk of infection and bruising.
To reduce the need for biopsy and improve the accuracy of
imaging for differentiating between benign and malignant
tumors, computer-aided diagnostic systems have been
developed.3,6

Mammography and sonography are two primary imag-
ing modalities for detecting breast cancer. Although mam-
mography is the main imaging technique, it has some
restrictions. On radiographic examinations, radiologists mis-
read 10% to 30% of breast cancers (false-positive and false-
negative values), especially in dense breasts.3,7–11 To provide
additional information and enhance the performance of
mammography, sonography is recommended. Sonogra-
phy is a popular medical imaging technique because of its
lower cost, real-time scanning, and lack of radiation. Owing
to the recent advancements in scanner resolution, trans-
ducer design, and signal processing, breast sonography
may be considered comparable with mammography in
terms of performance.12,13 Sonograms have diverse gray-
level intensities, and different tissues have considerably dif-
ferent textures. Although there is no precise definition of
image texture, it is perceived by humans. Generally, the
textures of images are complex visual patterns in the region
of interest (ROI) that characterize the distribution of gray-
level values, brightness, color, size, frequency, roughness,
and regularity, among other factors. A texture may con-
tain substantial information about the internal structure
of the human tissue or organ. Since radiologists usually
assess texture qualitatively, quantitative texture analysis is
required for more accurate diagnosis.14–16

There are 4 types of features that can be used to classify
benign and malignant breast tumors on sonography:
model-based, descriptor, texture, and morphologic features.3
Many studies have been conducted to distinguish between
benign and malignant tumors. Chen et al17 used fractal fea-
tures and a K-means classifier to classify benign and malig-
nant breast tumors, with accuracy of 88.8%, sensitivity of
93.64%, and specificity of 84.29%. Wu and Moon18 reported
accuracy, sensitivity, and specificity of 92.8%, 94.44%, and
91.67% respectively, when morphologic features were
used. Chen et al19 used texture features for classification of
benign and malignant breast tumors. They used principle
component analysis to diminish the dimensions of features
and an image retrieval technique for differentiating breast
tumors with mean accuracy ± SD of 92.5% ± 0.019%.
Moon et al20 used gray level co-occurrence matrix, shape,
and ellipsoid-fitting features. They indicated that combining
shape and ellipsoid-fitting features could achieve the best

performance, with accuracy, sensitivity, and specificity of
85%, 84.5%, and 85.5%. Zhou et al21 indicated that extracted
texture features by shearlet transform is more effective for
describing breast tumors on sonography compared to other
features extracted using wavelet, curvelet, contourlet, and
gray-level co-occurrence matrices. They achieved accuracy
of 91.0% ± 3.8%, sensitivity of 92.5% to 6.6%, and
specificity of 90.0% to 3.8% using a support vector machine
classifier.

In this study, we used texture analysis to extract tex-
ture features from sonograms to differentiate benign
tumors from malignant ones. The most important texture
features in texture analysis are computed from statistical,
model-based, structural, and transform methods. The most
commonly used texture parameters in texture analysis
come from 6 main categories: histogram (statistical class),
absolute gradient (statistical class), run length matrix (sta-
tistical class), co-occurrence matrix (statistical class),
autoregressive model (model class), and wavelet (trans-
form class).15,22

Materials and Methods

The sonographic database consisted of 32 biopsy-proven
tumors (20 benign and 12 malignant). Sonographic exami-
nations were performed with an Accuvix V20 scanner
(Medison Co, Ltd, Seoul, Korea) and an L5-13IS (5–13-
MHz) linear transducer. This study protocol was approved
by the Student Research Committee Bureau of the Urmia
University of Medical Sciences.

One sonogram per patient was input into MaZda ver-
sion 4.6 software (Lodz University of Technology, Lodz,
Poland) for texture analysis.16,23 In general, more than 91
nonoverlapping ROIs consisting of 56 benign and 35
malignant tumors were selected for discrimination and
classification. Before feature extraction for individual ROIs,
we applied 3 normalization schemes: (1) default, in which
images had the same appearance and an intensity range
from 1 to 2 k, where k was the number of the bits per pixel;
(2) μ ± 3σ, in which the image intensities were located
inside the normalization range (μ – 3σ and μ + 3σ, where
μ and σ were the mean value and standard deviation,
respectively, of the gray-level intensity inside the ROI, so
the intensity levels outside the normalization range were
not considered in further analysis of the ROI; and (3) 1%
to 99%, in which the ROI gray-level range between the
darkness level at which the accumulated histogram of 
the image was equal to 1% of its total to the brightness
level at which the accumulated histogram was equal to
99% of its total. Then we extracted 300 texture features
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based on the histogram, absolute gradient (spatial varia-
tion of gray-level values), run length matrix (counts of pixel
runs with the specified gray-level value and length in a given
direction), co-occurrence matrix (information about the
distribution of pairs of pixels separated by a given distance
and direction), autoregressive model (description of cor-
relation between neighboring pixels), and wavelet (decom-
position image frequency at different scales).

Because of the large number of features, they were not
suitable for statistical analysis. We used 2 well-known auto-
mated reduction automated algorithms (Fisher and proba-
bility of classification error + average correlation coefficient)
for selection of up to 10 texture features with the highest
Fisher and lowest probability of classification error + average
correlation coefficient features that showed the best
discrimination between benign and malignant tumors.
The Fisher algorithm uses a ratio of between-class variance
to within-class variance. The probability of classification
error + average correlation coefficient algorithm uses clas-
sification error probability combined with average correla-
tion coefficients.24,25 Next, these features were analyzed by
principle component analysis, linear discriminant analysis,
and nonlinear discriminant analysis methods under 2
standardization states (standard and nonstandard).26–29

First–nearest neighbor classification was performed for the
features resulting from the principle component and lin-
ear discriminant analyses. Nonlinear discriminant analysis
features were classified by an artificial neural network.29,30

At the end, receiver operating characteristic curve analy-
sis was used for evaluating the performance of the applied
texture analysis methods by calculating area under the curve
(Az), sensitivity, specificity, and overall accuracy.31–34 In this
study, sensitivity and specificity represent the probability of
a correct diagnosis of malignant tumors and the probability
of a correct detection of benign tumors by the radiologist,
respectively. The Az value represents the correct classifica-
tion ability of the test. Accuracy shows the percentage of
cases that were correctly diagnosed. Figure 1 shows the
computer-aided diagnostic processing steps.

Results

As mentioned previously, in this study we applied all
available options in the MaZda program for texture analysis:
3 normalization schemes, 2 feature reduction methods, 2
standardization states, and 3 texture analysis methods. 
In default normalization, the features extracted by both the
Fisher and probability of classification error + average cor-
relation coefficient algorithms showed higher performance
in nonlinear discriminant analysis than principle component

analysis and linear discriminant analysis, with sensitivity of
94.28%, specificity of 100%, and accuracy of 97.80%
(Table 1). In 3σ normalization, nonlinear discriminant
analysis showed the same discrimination performance only
with features from the Fisher reduction method (Table 2).
In 1% to 99% normalization, probability of classification
error + average correlation coefficient features showed
higher sensitivity, specificity, and accuracy (94.28%, 98.21%
and 96.70%, respectively) in nonlinear discriminant analysis
than principle component analysis and linear discriminant
analysis (Table 3). Figures 2–4 show receiver operating
characteristic curves plotted on the same graphs for discrim-
inating benign from malignant breast tumors based on the
normalization and standardization schemes. In general,
the nonlinear discriminant analysis method, which had the
greatest Az value, had an advantage over principle compo-
nent analysis and linear discriminant analysis in each state.
Table 4 shows the best performance in this study.

Discussion

In this study, 3 normalizations, 2 reduction automated
elimination algorithms, 2 standardization states, and 3 tex-
ture data analysis methods altogether provided 36 states per

Figure 1. Overview of the general breast sonographic texture analysis

process. ACC indicates average correlation coefficient; LDA, linear

discriminant analysis; NDA, nonlinear discriminant analysis; N.S.,

nonstandard; PCA, principle component analysis; POE, probability of

classification error; and S., standard. 
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ROI case study. The best results were driven by 3 conditions
(1) default normalization with features extracted by the
Fisher algorithm and analyzed by nonlinear discriminant
analysis; (2) 3σ normalization with features extracted by

the Fisher algorithm and analyzed by nonlinear discrimi-
nant analysis; and (3) default normalization with features
extracted by the probability of classification error + average
correlation coefficient algorithm and analyzed by nonlin-
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Table 1. Summary of Performance for Different Features and Feature Reduction Methods in Default Normalization

Feature Reduction Feature Analysis 

Method Method SEN, % SPC, % ACCY, % PPV, % NPV, % Az

Fisher N.S. PCA 71.42 82.14 78.02 71.42 82.14 0.7678

S. PCA 85.71 92.85 90.10 88.23 91.22 0.8928

N.S. LDA 88.57 92.85 91.20 88.57 92.85 0.9071

S. LDA 88.57 92.85 91.20 88.57 92.85 0.9071

NDA 94.28 100 97.80 100 96.55 0.9714

POE + ACC N.S. PCA 71.42 82.14 78.02 71.42 82.14 0.7678

S. PCA 88.57 96.42 95.60 93.93 93.10 0.9250

N.S. LDA 88.57 92.58 91.20 88.57 92.85 0.9057

S. LDA 88.57 92.58 91.20 88.57 92.85 0.9057

NDA 94.28 100 97.80 100 96.55 0.9714

ACCY indicates accuracy; NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; and SPC, specificity; other abbrevi-

ations are as in Figure 1.

Table 2. Summary of Performance for Different Features and Feature Reduction Methods in 3σNormalization

Feature Reduction Feature Analysis 

Method Method SEN, % SPC, % ACCY, % PPV, % NPV, % Az

Fisher N.S. PCA 82.85 85.71 84.61 78.37 88.88 0.8428

S. PCA 80.00 83.92 82.41 75.67 87.03 0.8196

N.S. LDA 82.85 91.07 87.91 85.29 89.47 0.8696

S. LDA 82.85 91.07 87.91 85.29 89.47 0.8696

NDA 94.28 100 97.80 100 96.55 0.9714

POE + ACC N.S. PCA 77.14 85.71 82.41 77.14 85.71 0.8142

S. PCA 80.00 89.28 85.71 82.35 86.20 0.8321

N.S. LDA 85.71 92.85 90.10 88.23 91.22 0.8928

S. LDA 85.71 92.85 90.10 88.23 91.22 0.8928

NDA 94.28 98.21 96.70 97.05 96.49 0.9624

Abbreviations are as in Figure 1 and Table 1.

Table 3. Summary of Performance for Different Features and Feature Reduction Methods in 1% to 99% Normalization

Feature Reduction Feature Analysis 

Method Method SEN, % SPC, % ACCY, % PPV, % NPV, % Az

Fisher N.S. PCA 85.71 87.50 86.81 81.08 90.74 0.8142

S. PCA 85.71 92.85 90.10 88.23 91.22 0.8321

N.S. LDA 80.00 89.28 82.41 82.35 87.71 0.8928

S. LDA 80.00 89.28 82.41 82.35 87.71 0.8928

NDA 94.28 96.42 95.60 94.28 96.42 0.9624

POE + ACC N.S. PCA 85.71 85.71 85.71 78.94 90.56 0.8571

S. PCA 85.71 87.50 86.81 81.08 90.74 0.8660

N.S. LDA 91.42 91.07 91.20 86.48 94.44 0.9124

S. LDA 91.42 91.07 91.20 86.48 94.44 0.9124

NDA 94.28 98.21 96.70 97.05 96.49 0.962

Abbreviations are as in Figure 1 and Table 1.
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ear discriminant analysis. The receiver operating charac-
teristic curve analysis indicated that all of these conditions
had similar performance in differentiating between benign
and malignant tumors (Figure 5).

Feature standardization has only a small effect on prin-
ciple component analysis, and it leads to an improvement
in performance. It has no impact on linear discriminant
analysis. To decrease the training time with the artificial

J Ultrasound Med 2015; 34:225–231 229
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Figure 2. Receiver operating characteristic curves for each texture analysis method in default normalization: A, Fisher features; B, probability of clas-

sification error + average correlation coefficient features. Abbreviations are as in Figure 1.

A B

Figure 3. Receiver operating characteristic curves for each texture analysis method in 3σnormalization: A, Fisher features; B, probability of classifi-

cation error + average correlation coefficient features. Abbreviations are as in Figure 1.

A B

3402jum-179-332-online_Layout 1  1/20/15  10:12 AM  Page 229



neural network classifier, all input feature parameters were
standardized previously in nonlinear discriminant analysis.

The proposed method demonstrated more reliable
performance in comparison to all studies17–21 already
conducted on the subject of sonographic differentiation
between benign and malignant breast cancers, with sensi-
tivity ranging from 84.5% to 94.44%, specificity ranging from
84.29% to 91.67%, and accuracy ranging from 85% to 92.8%.

Some limitations of this study should be clearly noted.
First, the data group was small; to overcome this limita-
tion, several ROIs for each tumor were selected. Further
investigation with a larger data set is needed. Second, 
feature combination tools were not available in the MaZda
program. For example, averaging of run length matrix
features of 4 different orientations was hard to perform
with MaZda. Third, since lower frequencies are used for
obese breasts, those images had lower spatial resolution than
others. Thus, further investigation with separate uniform
groups is needed.
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Figure 4. Receiver operating characteristic curves for each texture analysis method in 1% to 99% normalization: A, Fisher features; B, probability of

classification error + average correlation coefficient features. Abbreviations are as in Figure 1.

A B

Table 4. Summary of Best Performance

Feature Feature 

Reduction Analysis 

Method Method Normalization SEN, % SPC, % ACCY, % PPV, % NPV, % Az

Fisher NDA Default 94.28 100 97.8 100 96.55 0.9714

POE + ACC NDA Default 94.28 100 97.8 100 96.55 0.9714

Fisher NDA 3σ 94.28 100 97.8 100 96.55 0.9714

Abbreviations are as in Figure 1 and Table 1.

Figure 5. Receiver operating characteristic curves for the best

results. All 3 methods had the same performance. Abbreviations are

as in Figure 1.
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The MaZda software was developed in 1998 for the
purpose of automatic texture analysis on magnetic reso-
nance imaging.22 We used it for sonography because of its
superiority over other texture analysis methods by provid-
ing more than 300 features that are essential for texture
pattern recognition. Generally, our results indicate that
an automatic texture analysis method with application of
MaZda software can provide useful information that con-
tributes to discrimination of breast cancers on sonography
and also has the potential to help radiologists in detection and
classification of benign and malignant breast tumors.
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