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The in vitro interactions between echinocandins and azoles were determined against ten 27 

multidrug-resistant Candida auris strains by using a microdilution checkerboard 28 

technique. Our results suggest synergistic interactions between micafungin and 29 

voriconazole with FICI range values of 0.15 to 0.5, and indifferent interactions were 30 

observed when micafungin was combined with fluconazole (FICI range: 0.62-1.5). 31 

Combinations of caspofungin with fluconazole or voriconazole exhibit indifferent 32 

interactions. No antagonism was observed for any combination. 33 
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      Candidiasis caused by uncommon Candida species has increased in recent years, particularly 53 

among immunocompromised patients (1). In the Metschnikowiaceae clade, Candida auris causes 54 

a variety of infections, ranging from superficial mucocutaneous candidiasis to severe 55 

bloodstream infections (2-3). Remarkably, in recent years, multidrug-resistant C. auris has 56 

emerged in Asia, Africa, Europe and America, resulting in several cases of fungemia (3-14). 57 

Although European Society of Clinical Microbiology and Infectious Diseases (ESCMID) 58 

guidelines for the diagnosis and management of candidiasis have recommended the use of 59 

azoles, polyenes, and echinocandins (15,16), toxic effects of amphotericin B restrict its clinical 60 

application. In addition, resistance to azoles and echinocandins in Candida species has become a 61 

severe clinical challenge (17). Fungemia due to C. auris is associated with a high mortality rate 62 

and treatment failure, in addition to being potentially resistant to azoles, polyenes, and/or 63 

echinocandins (18-21). Thus, accurate identification of C. auris and in vitro antifungal 64 

susceptibility testing is highly recommended (22). Due to limited available treatment choices and 65 

high rates of therapeutic failures, novel strategies are needed to improve patient outcome (23). 66 

Combinations of echinocandins and azoles seem to be an attractive treatment regimen, as both 67 

drugs have different antifungal targets and mode of action. We therefore investigated the efficacy 68 

of echinocandins plus azoles against multidrug-resistant C. auris clinical isolates. 69 

       A total of ten C. auris strains from patients with candidemia, in tertiary care hospitals in 70 

Delhi, including fluconazole-resistant isolates (n = 10) and micafungin-resistant (n = 3) 71 

(according to non-species specific Candida species breakpoints of > 4 µg/ml and ≥ 8 µg/ml for 72 

fluconazole- and echinocandin-resistant species, respectively [14]), were studied (Tables 1 and 73 

2). All isolates had been identified previously by conventional and molecular methods, i.e., 74 

CHROMagar Candida medium (Difco, Becton Dickinson & Company, Baltimore, MD, USA), 75 

 on A
ugust 28, 2017 by R

A
D

B
O

U
D

 U
N

IV
E

R
S

IT
E

IT
 N

IJM
E

G
E

N
http://aac.asm

.org/
D

ow
nloaded from

 



   

4 
 

microscopic morphology on Corn-Meal agar (CMA, Difco, laboratories, Detroit, Mich., USA) 76 

with 1 % tween 80, and sequencing of internal transcribed spacer (ITS) ribosomal DNA (rDNA) 77 

and D1/D2 regions. In addition the isolates were identified by MALDI-TOF (MALDI Biotyper 78 

OC version 3.1, Bruker Daltonics, Bremen, Germany) (18). All strains were stored in 10% 79 

glycerol broth at -80 °C at the Department of Medical Mycology, Vallabhbhai Patel Chest 80 

Institute, University of Delhi and were sub-cultured on Sabouraud dextrose agar (SDA) 81 

supplemented with 0.02% chloramphenicol at 35°C for 3 days to ensure purity and viability. All 82 

isolates were sub-cultured again on SDA before preparation of the inoculum. The interactions of 83 

caspofungin and micafungin with fluconazole or voriconazole were investigated by using a 84 

microdilution checkerboard method based on the CLSI reference technique with 96-well 85 

microtiter plates (24). Fluconazole (FLU; Pfizer, Groton, CT, USA), voriconazole (VRC; Pfizer), 86 

caspofungin (CAS; Merck) and micafungin (MFG; Astellas, Toyama, Japan), were dissolved in 87 

100% dimethyl sulfoxide (DMSO). Drug dilutions were prepared to obtain four times the final 88 

concentration. Concentrations ranged from 8 to 0.016 µg/ml for caspofungin, from 8 to 0.016 89 

µg/ml and 1 to 0.002 µg/ml for micafungin, from 64 to 1 µg/ml for fluconazole and from 16 to 90 

0.25 and 1 to 0.016 µg/ml for voriconazole. The concentration range of micafungin and 91 

voriconazole depended on the MIC results of each isolates. For two-dimensional microplate 92 

preparation i.e., caspofungin plus fluconazole, caspofungin plus voriconazole, micafungin plus 93 

fluconazole and micafungin plus voriconazole, a total of 50-μL of each concentration of 94 

echinocandins (caspofungin and micafungin) were added to columns 1–11, and then 50-μL of 95 

azoles (fluconazole and voriconazole) were added to rows A–H, respectively. The wells of 96 

column 11 and the wells of row H contained 50 µL of RPMI containing 1% of the solvent. Row 97 

H and column 11 contain the echinocandins and azoles alone, respectively. Column 12 was the 98 
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drug-free wells that served as the growth control. The maximal final concentration of DMSO in 99 

the test wells was less than 1%. Trays were stored at -80 °C until the day of testing. After the 100 

microtiter trays were defrosted, 100 μL of the inoculum was added to each well. Briefly, 101 

homogeneous suspensions were measured spectrophotometrically at 530 nm wavelength to a 102 

percent transmission in the range 75–77%. The final concentration of the stock inoculum 103 

suspensions of the isolates tested ranged from 1 - 3 × 10
3
 CFU/ml, as determined by quantitative 104 

colony counts on Sabouraud glucose agar (SGA, Difco). Plates were incubated at 35 °C and 105 

examined visually after 24 hr to determine MIC values for drugs alone and in combination. The 106 

MIC endpoints were determined with the aid of a reading mirror and were defined as the lowest 107 

concentration of drug that significantly reduced growth (≥50 %) compared with the growth of a 108 

drug free control. For calculations, high off-scale MICs were raised to the next log2-dilution step, 109 

while the low off-scale MICs were left unchanged (25). To assess the interaction of 110 

combinations of drugs, the fractional inhibitory concentration index (FICI) was calculated. The 111 

FICI was defined as the following equation: FICI = FICA+FICB = (CA/MICA) + (CB/MICB), 112 

where MICA and MICB are the MICs of drugs A and B alone, and CA and CB are the 113 

concentrations of the drugs in combination, in all wells corresponding to an MIC. The interaction 114 

was defined as synergistic if the FICI was ≤0.5, indifferent if >0.5 – ≤4.0, and antagonistic if >4 115 

(24). 116 

      The results for the tested drug alone and in combination against the ten C. auris strains are 117 

summarized in Tables 1 and 2. The MIC ranges of drugs alone against strains were 32 - ≥64 118 

µg/ml for fluconazole, 0.5-8 µg/ml for voriconazole, 0.5-4 µg/ml for caspofungin and 0.125-8 119 

µg/ml for micafungin (Tables1 and 2). Based on the checkerboard microdilution assay, when 120 

caspofungin was combined with fluconazole, the MIC ranges for caspofungin and fluconazole 121 
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decreased to 0.25 to 2 µg/ml and 8 to 64 µg/ml, respectively, the results showed that the 122 

combination exhibited indifferent activity against all ten strains (FICI range: 0.56-2) and when 123 

caspofungin was combined with voriconazole, the MIC ranges for caspofungin and voriconazole 124 

decreased to 0.25 to 2 µg/ml and 0.063 to 4 µg/ml, respectively, demonstrated indifferent activity 125 

with FICI range values of 0.62-2 against all strains (Table 1). For the combination of micafungin 126 

with fluconazole, the MIC ranges of micafungin and fluconazole were reduced to 0.063 to 8 127 

µg/ml and 4 to 64 µg/ml, respectively, indifference was also observed with FICI range values of 128 

0.62 to 1.5 (Table 2). Synergistic effects of micafungin with voriconazole were shown against 129 

ten multidrug-resistant C. auris (FICI range: 0.15-0.5), the MIC ranges of micafungin and 130 

voriconazole were reduced to 0.008 to 2 µg/ml and 0.125 to 1 µg/ml, respectively (Table 2). 131 

Overall, no antagonistic effects were observed for any combination. 132 

      In this study, we used the checkerboard microdilution method for analysis of drug–drug 133 

interactions of echinocandins with azoles against multidrug-resistant C. auris. The emergence of 134 

new species and antifungal resistance has raised the issue of using alternative therapeutic 135 

strategies. Evidence to support treatment choices for multidrug-resistant C. auris disease is rare 136 

at present. Except for one study (20), in vitro antifungal profiles are relatively scarce and based 137 

on low numbers of test isolates (14, 19, 21). The in vivo efficacy of antifungal therapy against C. 138 

auris is undetermined and also in vitro data from different sources are inadequate. Echinocandins 139 

are the recommended treatment in patients with potent activity, excellent safety profile, and 140 

favorable pharmacokinetics (26-28) but unsuccessful treatment of C. auris infections with 141 

fluconazole, voriconazole, amphotericin B, caspofungin, and anidulafungin has been already 142 

reported (6). On the other hand, micafungin is used for the prophylaxis and treatment with broad 143 

spectrum of activity in both neutropenic and non-neutropenic patients (15, 29). Concordant with 144 
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other reports (30, 32), micafungin activity was shown to be as effective as caspofungin in vitro 145 

against Candida glabrata isolates with and without fks mutations. Micafungin was also effective 146 

in vivo for decreasing the fungal burden in mice infected with C. glabrata with fks mutations. It 147 

seems that lower concentrations of drugs cause fewer side-effects and improve the treatment 148 

outcomes. We have shown that interaction between micafungin with voriconazole exhibited 149 

synergistic activity against multidrug-resistant C. auris strains suggesting that it may be 150 

considered in patients with candidiasis. However, confirmation of in vitro results presented here, 151 

need in vivo studies with suitable animal models of C. auris infection. Clearly, more research is 152 

indicated to explore clinical management. In conclusion, combination of micafungin and 153 

voriconazole exhibited synergistic activity against multidrug-resistant C. auris suggesting an 154 

alternative approach to overcome antifungal drug resistance. However, using this combination 155 

therapy in vivo needs further study in addition to determination of the underlying mechanism of 156 

this synergistic action. 157 
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Table 2. In vitro interactions of micafungin with fluconazole and voriconazole against Candida 307 

auris 308 
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Table 1. In vitro interactions of caspofungin with fluconazole and voriconazole against Candida auris 

 

 

Abbreviations: CAS; caspofungin,  FLU; fluconazole, VRC; voriconazole, FICI; Fractional Inhibitory 

Concentration Index, IND; Indifference, SYN; synergy; MIC; minimal inhibitory concentration, INT; 

interpretation,
 *
 fluconazole-resistant isolates (n = 10). 

 

 

              CAS+FLU                                                              CAS+VRC 

         

 

 

  Strains nr 

     MIC 

 (µg/ml) 

 

 

 

FICI/INT 

   MIC 

(µg/ml) 

  

 

 

FICI/INT 
 

CAS 

 

FLU 

 

CAS/FLU 

 

CAS 

 

    VRC 

 

CAS/VRC 

       

VPCI 482/P/13
*
 2 ≥64 1/32 0.75/IND 2 2 1/0.5 0.75/IND 

VPCI 1132/P/13
*
 2 32 1/8 0.75/IND 2 0.5 1/0.063 0.62/IND 

VPCI 1133/P/13
*
 4 ≥64 2/64 1/IND 4 1 2/0.25 0.75/IND 

VPCI 265/P/14
*
 4 32 2/32 1.5/IND 4 8 2/0.25 0.75/IND 

VPCI 1510/P/14
*
 0.5 32 0.5/32 2/IND 0.5 4 0.5/4 2/IND 

VPCI 1514/P/14
*
 1 ≥64 0.5/32 0.75/IND 1 0.5 1/0.25 1.5/IND 

VPCI 266/P/14
*
 2 ≥64 1/32 0.75/IND 2 0.5 1/0.25 1/IND 

VPCI 267/P/14
*
 2 32 1/8 0.75/IND 2 0.5 2/0.063 0.62/IND 

VPCI 487/P/14
*
 1 ≥64 0.5/8 0.56/IND 1 1 0.5/0.125 0.62/IND 

VPCI 518/P/14
*
 0.5 ≥64 0.25/8 0.56/IND 0.5 1 0.25/0.25 0.75/IND 
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Table 2. In vitro interactions of micafungin with fluconazole and voriconazole against Candida auris 

 

Abbreviations: MFG; micafungin, FLU; fluconazole, VRC; voriconazole, FICI; Fractional Inhibitory 

Concentration Index, IND; Indifference, SYN; synergy, MIC; minimal inhibitory concentration, INT; 

interpretation, 
*
 fluconazole-resistant isolates (n = 10), 

**
 micafungin-resistant (n =3). 

 

 

 

                                                            MFG+FLU                                                                     MFG+VRC 

         

 

 

Strains nr 

     MIC 

 (µg/ml) 

 

 

 

FICI/INT 

 MIC 

(µg/ml) 

  

 

 

FICI/INT 
 

MFG 

 

FLU 

 

MFG/FLU 

 

MFG 

 

VRC 

 

MFG/VRC 

       

VPCI 482/P/13
*
 0.25 ≥64 0.25/64 1.5/ IND 0.25 2 0.016/0.5 0.31/SYN 

VPCI 1132/P/13
*
 0.5 32 0.25/4 0.62/ IND 0.5 0.5 0.016/0.125 0.28/SYN 

VPCI 1133/P/13
*, **

 8 ≥64 4/32 0.75/ IND 8 1 2/0.25 0.5/SYN 

VPCI 265/P/14
*
 0.5 32 0.5/8 1.25/ IND 0.5 8 0.063/1 0.25/SYN 

VPCI 1510/P/14
*
 0.125 32 0.063/8 0.75/ IND 0.125 4 0.016/0.25 0.19/SYN 

VPCI 1514/P/14
*, **

 8 ≥64 8/16 1.12/ IND 8 0.5 1/0.125 0.37/SYN 

VPCI 266/P/14
*
 0.25 ≥64 0.25/32 1.25/ IND 0.25 0.5 0.008/0.125 0.28/SYN 

VPCI 267/P/14
*, **

 8 32 8/8 1.25/ IND 8 0.5 1/0.125 0.37/SYN 

VPCI 487/P/14
*
 4 ≥64 4/32 1.25/ IND 4 1 0.5/0.125 0.25/SYN 

VPCI 518/P/14
*
 0.5 ≥64 0.25/64 1/ IND 0.5 1 0.016/0.125 0.15/SYN 
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