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A B S T R A C T

The inability of cancer cells in taking care of DNA damages can lead to cancer development and/or progression. Due to
the essential role of DNA repair in maintaining genomic stability, tightly controlled regulatory mechanism are required
for these processes. Recent studies have shown a myriad of interactions among DNA damage response (DDR) compo-
nents and miRNAs. While DDR modulates miRNA expression in transcriptional and post-transcriptional levels and af-
fects miRNA degradation, miRNAs in turn, directly modulate the expression of multiple proteins in the DDR pathways,
or indirectly fine-tune the expression of such proteins. A better understanding of DDR-miRNA interactions can facili-
tate the development of new anticancer agents targeting miRNAs involved in the DNA repair process. In this review, we
provide a brief introduction about miRNA biogenesis and functions, DDR pathways, and recent findings about DDR-mi-
croRNA interactions. Finally, the therapeutic importance of miRNAs in modulation of DDR/DNA repair mechanisms
will be discussed.

© 2016 Published by Elsevier Ltd.

DNA Repair xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

DNA Repair
journal homepage: www.elsevier.com

Review

DNA damage response regulation by microRNAs as a therapeutic target in cancer
Maryam Majidinia a, b, c, Bahman Yousefib, c, d,*

aDepartment of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences, Urmia, Iran;
bMolecular Targeting Therapy Research Group, Faculty of Medicine,Tabriz University of Medical Sciences, Tabriz, Iran;
cImmunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran;
dStem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

1. Introduction

Structural alternations in DNA severely affect its functions including
replication and transcription. The inability of cancer cells to properly
repair DNA is an underlying phenomenon in tumor development
[1]. In response to various DNA lesions, a complex DNA damage
response (DDR) mechanism is activated by a kinase-based sig-naling
network [2]. Through this molecular mechanism, cells can detect such
damages and transduce signals to recruit DNA repair elements to
the site of damage, and finally repair damage by effectors, or as an
alternative, activate cell cycle checkpoints or apoptosis, in the case
of unrepairable damages [2]. Because of the pivotal role of DDR in
maintaining genomic stability and integrity, precise regulating
mechanisms are required for the repair process to respond to multiple
types of DNA damage in various stages of cell cycle [3]. Given the
undeniable involvement of DDR in the cancer development and
progression, therapies targeting DDR offer new opportunities in can-
cer therapy [4]. Accumulating evidence has suggested that miRNAs
are emerging as novel players in DDR and DNA repair pathways.
Understanding the interplay between DDR/DNA repair and miRNAs
will help to increase our knowledge about cancer progression and
therefore, introduce new potential targets for successful treatment of
cancer [5]. In this review, we provide a brief introduction about miRNA
biogenesis and functions, DDR pathways, and recent findings about
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DDR-microRNA interactions. Finally, the therapeutic importance of
miRNAs in modulation of DDR/DNA repair mechanisms will be dis-
cussed.

1.1. The DNA damage response and repair

Exposure to various endogenous and exogenous stressors includ-
ing reactive oxygen species (ROS), ionizing radiations (IR) and ul-
traviolet (UV) light as well as radio- and chemo-therapeutic agents
can bring about DNA damage in the form of mutations, base adducts,
DNA mismatch, O6 alkylguanine formation, double strand breaks
(DSBs), single strand breaks (SSBs), insertions, deletions and chro-
mosomal rearrangements upon cell division or DNA replication [6].
DDR is conserved across all organisms for maintaining genomic in-
tegrity and consists of proteins working in different levels as sensors,
mediators, transducers, and effectors in the repair process [7]. DDR
is mediated by phosphorylation-driven signaling events, followed by
a delayed response that induce cyclin dependent kinase (CDK) in-
hibitors at transcriptional levels for extending the time of cell cycle
arrest. Early signaling pathways activated upon DDR include three
phosphoinositide 3- kinase (PI3K)-like protein kinases, namely ATR,
ATM, and DNA PKcs. These protein kinases are activated by dif-
ferent kinds of DNA damages and act by phosphorylation of differ-
ent target proteins [5,6]. ATR kinases are induced upon UV dam-
age and detection of SSD molecules, such as stalled replication forks
and DSBs. ATR kinases principally phosphorylate Chk1 kinases, and
control genomic stability and cell cycle checkpoints [8]. ATM ki-
nases also phosphorylate Chk2, p53 and BRCA1, which are involved
in regulating the induction of DNA repair and cell cycle checkpoints
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[9]. Cdc25 phosphatase family are one of the most important target
proteins of both Chk1 and Chk2. Cdc25 phosphatase are involved in
the activation of the CDKs [10]. DNA-PKcs are induced upon detec-
tion of DSBs, and subsequently phosphorylate themselves and other
substrates. PKcsplay an important role in DSB repair through non-ho-
mologous end joining [1].

DNA damages can be repaired by three main mechanisms includ-
ing base excision repair (BER), nucleotide excision repair (NER), and
mismatch repair (MMR) [11,12]. NER is mainly required for repair-
ing of transcription blocking and helix sorting lesions such as pyrim-
idine dimers and intrastrand crosslinks [13]. BER functions by re-
moving chemical modifications of DNA or single nucleotides which
have been altered by oxidation, alkylation, deamination, or methyla-
tion [14]. In turn, MMR machinery corrects improperly incorporated
nucleotides during DNA synthesis or replication errors in DNA re-
peats [12]. Non-homologous end joining (NHEJ) or homologous re-
combination (HR) are also two major repair mechanisms for removing
the most frequently toxic and difficult-to-repair DNA damage, DSBs.
NHEJ is activated during pre-replicative (G0 and G1) phases of cell
cycle and directly rejoins broken DNA ends. In spite of NHEJ, HR
predominates in S phase of the cell cycle and requires a homologous
DNA template sequence for error-free repair [15].

1.2. miRNAs: biogenesis and function

Since miRNAs have broad biological and functional implications,
they have received the major attention among other classes of
non-coding RNAs. Classified as a conserved category of short and sin-
gle-stranded RNA molecules with an average size of 22 nucleotides,
miRNAs fine-tune gene expression through their interactions in the
DNA, RNA and protein levels [16,17]. Two distinct biosynthesis
pathways have been envisioned for small ncRNAs, which are fur-
ther divided into multiple steps [18]. In the first step of canonical
or Drosha/Dicer-dependent biosynthesis pathway, RNA polymerase
II transcribes primary miRNA (pri-miRNA) from two target genomic
loci: miRNA genes or the introns of protein-coding mRNAs [19].

The resulting pri-miRNAs, which fold into secondary structures com-
prised of base-paired stem loops, can subsequently be polyadenylated
and regulated by transcription factors. In the second step, in the nu-
cleus, the pri-miRNAs are cleaved into about 70-nucleotide prema-
ture-miRNAs (the so-called pre-miRNAs) containing hairpin struc-
tures by Drosha/DGCR8 complex, a RNase III type endonuclease mi-
croprocess (Fig. 1) [20].

The next step is to traverse the pre-miRNAs into cytoplasm across
the nuclear membrane by Exportin-5 via a Ran-GTP-mediated mech-
anism. Once in the cytoplasm, the pre-miRNAs are cleaved into RNA
duplexes of roughly 22 nucleotides by a complex of Dicer (a sec-
ond RNase III-type enzyme) and TAR RNA-binding protein 2. The
RNA duplexes bind to a 182 kDa protein constituting glycine-tryp-
tophan repeat and argonaute proteins, AGO1-4, resulting in the for-
mation of the miRNA-induced silencing complex (RISC) [21,22]. In
the next step, the mature guide strand (20–22 nucleotides in length)
remains in association with RISC. This strand is also referred to as
miRNA-5p [23]. The other anti-sense strand, known as passenger
miRNA (the so-called miRNA-3p, and is a complementary star-form
miRNA, miRNA*) is released from RISC. It was initially believed
that the antisense strand is degraded in the cytoplasm; however, a
number of recent studies have shown that some might have biological
importance [24].

Subsequently, the mature miRNA exerts its biological function(s)
via aligning the RISC to complementary sequences in the 3′UTR
of target mRNA [25,26]. The resulting association, most commonly
represses the translation of target proteins and recruits some pro-
tein complexes which contribute to deadenylation and degradation
of the related target mRNA and finally, leading to down-regulation
in gene expression [27]. Alternatively, in the non-canonical path-
way, also termed as Drosha-independent/Dicer-dependent pathway,
pre-miRNAs bypasses the Drosha/DGCR8 complex and are processed
by AGO2 to yield the mature guide strand. The RNA products of this
pathway are very short introns often referred to as mirtrons. After
translocation to the cytoplasm, mirtrons act similarly to miRNA pro-
duced from the canonical pathway [28].

Fig. 1. An overview of mRNAs biogenesis.
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miRNAs plays certain roles in the control of multiple processes,
including differentiation, proliferation, development and apoptosis
[29,30]. A number of mechanisms have been explained for miRNAs
in controlling gene expression, which include but may not be limited
to mRNA cleavage, cap-40S initiation blockage, inhibition of 60S ri-
bosomal unit association and elongation, ribosome premature termina-
tion, co-translational protein degradation and decomposition in P-bod-
ies, as well as mRNA destabilization and gene silencing [31,32].

mRNA cleavage or translational repression are the two main
post-transcriptional mechanisms by which the miRNAs-RISC com-
plex can reduce gene expression. If the miRNA in combination with
cytoplasmic RISC has adequate complementarity to the mRNA (usu-
ally to 3′ UTR), it will determine the cleavage process [33–35]. On the
other hand, in case the mRNA is not complementary to be degraded
mRNA, but does have an appropriate constellation of miRNA com-
plementary sites, it will inhibit productive translation [36]. Moreover,
after this process, the miRNA remains intact and can therefore assist
in the recognition and degradation of other targets. Another possible
mechanism is that a recently synthesized polypeptide is specifically
deconstructed after translation [37,38]. Finally, although a large num-
ber of studies have been dedicated to miRNA mode of action, further
biochemical and molecular investigation will be required to describe
miRNA-mediate gene regulation.

2. miRNAs in DNA damage response

2.1. DDR modulates miRNAs expression in transcription level

In transcription level, DNA damage can directly regulate miRNA
expression by numerous transcription factors such as TP53, TP63,
E2F, NF-κB, c-jun, and MYC, because the promoter characteristics
of many miRNA are similar to those of normal protein-coding genes
[39,40]. It is quite well known that regulation of miRNAs expres-
sion by transcription factors is mediated by two mechanisms; reg-
ulation by directly binding to miRNA promoters, and modification
of the expression of miRNA processing machinery components [9].
The tumor suppressor p53 is a transcription factor induced in DNA
damage, known to regulate the expression of a subset of miRNAs
in transcription level [41]. To identify the contribution of miRNAs
in TP53-mediated transcriptional pathways, miRNA expression pro-
filing of wild-type and TP53-deficient cells as well as genome-wide
miRNA screening for TP53-dependent regulation upon DNA damage
have been performed [40]. The miR-34 family was the first identi-
fied link between transactivation of miRNAs by p53. The expression
of this family is induced by p53 following DNA damage and onco-
genic stress. The main mechanism behind the p53-mediated transcrip-
tional activation of miR-34 family is the direct binding of p53 to their
promoters. On the other hand, miRNA-34 family members have been
reported to inhibit the transcription of multiple genes regulating cell
proliferation, cell survival, and cell cycle progression, including CC-
ND1 CCNE2, BCL2, CDK4, MYC, CDK6, and SIRT1 [40]. In other
words, ectopic expression of miR-34 family results in cell cycle ar-
rest at G1 and decrease in the expression of a group of genes pro-
moting cell cycle progression, which suggest their tumor suppressive
potentials [40]. Transactivation of miR-34a was shown to inhibit cell
proliferation through the induction p53-mediated apoptosis, cell cycle
arrest or senescence [40]. As another member of the miR-34 family,
MiR-34c is transcriptionally induced by p53 upon DNA damage [42].
However, in the absence of p53, miR-34c induction is mediated by an

alternative pathway that probably involved signaling through p38
MAPK to MK2 [42].

MiR-192, miR-194, and miR-215 cluster are other examples of
miRNAs which are upregulated transcriptionally by p53 upon treat-
ment with genotoxic agents [40]. The genomic region surrounding the
miRNA-194 and miRNA-215 cluster contains a putative TP53-bind-
ing element, indicating that these miRNAs are transcriptionally ac-
tivated by p53 [40]. Ectopic expression of miR-192/215 leads to
cell-cycle arrest by targeting several transcripts that modulate G1/S
and G2/M checkpoints [43]. In addition, miRNA-192 has been shown
to enhance the level of P21 in TP53+/+ colorectal carcinoma cell line,
but not in TP53-/- cells, suggesting the existence of a positive feed-
back loop for the modulation of p53 activity [43]. Moreover, downreg-
ulation of miRNA-192 and miRNA-215 was reported in many colon
cancer samples, indicating tumor suppressor potential of miRNAs
[43]. In contrast to the above mentioned miRNAs, which are upreg-
ulated by p53 upon DNA damage, miR-17-92 cluster is repressed by
p53 under hypoxic conditions, subsequently resulting in sensitization
to hypoxia-induced apoptosis. The p53-mediated transcriptional sup-
pression of miR-17-92 works by preventing the TATA binding protein
(TBP) from binding to a TATA box that overlaps with the p53-bind-
ing site within the miRNA-17-92 promoter [44]. More importantly,
the expression of pri-miR-17-92 is inversely related to p53 status in
colorectal cancer, suggesting the tumor-promoting role of this miRNA
in cancers.

p53 also transcriptionally activates miR-29, miR-145, miR-107,
miR-15a/16 and miR-605, and suppresses the expression of miR-520g
[45–50]. In addition to p53, E2F and c-Myc are two other transcrip-
tion factors that have important regulatory function in DNA dam-
age-induced cell cycle checkpoints and activate the expression of sev-
eral miRNAs. Both transcription factors induce the transcription of
miR-17-92 cluster that, in turn, suppresses E2F expression, generat-
ing an auto-regulatory feedback loop [51]. MiR-12-92 is yet another
example, the expression of which is regulated by E2F and c-Myc
[52,53]. miR-203 is regulated by E2F1 [54]. miR-203 expression was
elevated upon activation of ectopic E2F1. Moreover, it was demon-
strated that E2F1 transactivates miR-203 through direct binding to its
gene promoter [54]. c-Myc alone enhances the expression of miR-20a,
miR-221, and miR-222 in transcription level [55].

Moreover, TAp63, an important transcript of the p63 gene, has a
substantial role in suppression of tumorigenesis and metastasis. Sim-
ilar to p53, TAp63 is activated by DNA damage and other cellu-
lar stresses. It has been shown that the upregulation of Dicer and
miR-130b significantly affected the metastatic potential of TAp63-de-
ficient cells [56]. Further studies demonstrated that activation of
miR-130b and Dicer transcription by TAp63 is mediated by direct
binding of TAp63 to their promoter region.

NF-kB and c-jun also induce gene transcription of miR-221 and
miR-222 [57,58]. Additionally, NF-kB alone regulates miR-21 ex-
pression in the transcription level [59]. Moreover, the transcription
factor STAT3 −which is dependent on NF-κB-mediated IL-6 induc-
tion for activation, upregulates miR-181a after genotoxic treatments in
breast cancer cell line [60]. In line with the above, high miR-181a lev-
els are linked to poor survival and prognosis after treatment in breast
cancer patients. Interestingly, activated STAT3 has been shown to di-
rectly bind to MIR181A1 promoter to drive transcription and to also
facilitate the recruitment of MSK1 to the same region. MSK1 sub-
sequently phosphorylating histone H3, this promoting a local active
chromatin state.
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2.2. DDR modulates miRNAs processing and maturation
post-transcriptionally

Not only DDR affects miRNA gene transcription, it also modulates
the post-transcriptional processing of miRNAs, which is achieved by
regulating the essential steps in the miRNA processing and maturation
[61]. The underlying evidence for this suggestion is the increase in the
levels of some pre-miRNAs and mature miRNAs without alternation
in the levels of their primary transcripts under DNA damage stress.

Similar to its role in transcriptional control of miRNA expres-
sion, p53 also plays an active role in the post-transcriptional regu-
lation upon DDR. This is manifested by the fact that the regulation
of miRNA maturation by DDR is p53 dependent. Upregulation of
some miRNAs such as miR-16-1, miR-143 and miR-145, has been
shown to be post-transcriptionally induced in a p53- and p68/p72-de-
pendent manner upon genotoxic stress [62,63]. DEAD box RNA he-
licases p68 (DDX5) and p72 (DDX17) act as subunits of the Drosha
complex and are essential for recognition and processing of a group
of primary miRNAs. p53 interaction with the Drosha processing com-
plex is facilitated by binding to p68/p72 and, in turn, this interac-
tion mediates the processing of pri-miRNAs to their pre-miRNAs.
However, transcriptionally inactive p53 mutants disrupt the assem-
bly between the p68 and Drosha complex, resulting in inhibition of
miRNA processing activity. More importantly, p53 mutations are fre-
quently observed in malignancies and most of them are located in a
domain that is required for both miRNA processing function and tran-
scriptional activity [64]. Thus, loss of p53 functions in miRNA pro-
cessing might be involved in the cancer progression. Since the pro-
moter regions of the main components of the miRNA processing ma-
chinery such as Dicer and P2P-R contain p53-responsive elements,
it has been suggested that these components are targeted by p53 and
its homologs p63 and p73. Previous genome analyses have shown
that the guardians of genome, p53, p63, and p73 can regulate the
miRNA processing components, either in a positive or negative man-
ner. These miRNAs include let-7, miRNA-16, miRNA-21, miR-26,
miR-29, miR-34, miRNA-107, miRNA-134, miRNA-143, miR-145,
miR-146a, miRNA-449a, miRNA- 200c and miRNA-503 [65,66]. A
recent study showed that p53 directly binds to AGO2, leading to an
induction or reduction in loading of a subset of miRNAs – including
lethal 7 (let-7) miRNA family members- onto AGO2, in response to
DNA damage [67]. Mutant p53 suppresses miRNA production at post
transcriptional level by interfering with the microprocessor complex.
Garibaldi et al. [68]. have reported that endogenous mutant p53 binds
to microprocessor complex, sequestering RNA helicases p72/82 and
interfering with Drosha-pri-miRNAs association. In agreement with
this finding, p72 overexpression enhances mature miRNAs levels.
Moreover, mutant p53-dependent miRNAs such as miR-517a, −519a,
−218, −105 possess oncosuppressive roles, as shown by functional ex-
periments [68].

Cumulative studies have reported that as many as one fourth of
all miRNAs are significantly induced following DDR in an ATM-de-
pendent manner. A group of these miRNAs are associated with KSRP
(KH-type splicing regulatory protein), which is an AU-rich sin-
gle-strand RNA-binding protein that regulates RNA decay, and at the
same time, is a key component of both the Drosha and Dicer com-
plexes [69]. KSRP interacts with the terminal loop of pre-miRNA
precursors with high affinity. As such, KSRP positively regulates
the maturation of miRNA precursors, such as pri-miRNA-1,
pri-miRNA-15, pri-miRNA- 21 and pri-let-7 [70]. Upon ATM-de-
pendent phosphorylation, KSRP significantly contributes to the re-
cruitment of pri-

miRNAs to the Drosha complex and boosts their processing. These re-
sults strongly indicate that ATM is a key regulator of KSRP in miRNA
processing, and that the biogenesis of a subset of miRNAs is promoted
via KSRP. Finally, ATM also activates DNp63a, which upregulates
Dicer to promote miRNA maturation after treatment with the DNA
damage-inducing agents [69].

In addition to initiating PI3K- like protein kinases such as ATM,
DDR also activates many downstream kinases which might regulate
miRNA processing. The mitogen-activated protein kinase (MAPK)
Erk- dependent phosphorylation of TRBP, stabilizes the Dicer-TRBP
complex and enhances mature miRNA production [71]. A group of
miRNAs including miR-17, miR-20a and miR-92a (with growth pro-
moting effects) are upregulated by phosphorylation of TRBP. How-
ever, opposite effects have been observed on let-7 family (with tu-
mor suppressor effects). These finding suggest that phosphorylation of
TRBP results in a mitogenic miRNA expression profile, including up-
regulation of pro-growth miRNAs and downregulation of anti-growth
miRNAs [72]. c-Myc is also involved in the promotion of miRNA pro-
cessing by upregulating the Drosha expression level [73].

MMR pathways are yet among the other alternative mechanisms
which mediate the miRNA processing and maturation in response
to DNA damages. The MLH1-PMS2 heterodimer was reported to
positively regulate the processing of numerous miRNAs such as
miRNA-422a, by interaction with pri-miRNAs, binding to the Drosha/
Pasha complex, and activating the Drosha/Pasha-mediated processing
of pri-miRNAs to pre-miRNAs [74]. Additionally, the tumor suppres-
sor BRCA which is also an important part of the DSBs response, has
been recently shown to increase the expression of both precursor and
mature forms of let-7a-1, miRNA-16-1, miRNA-34a and miRNA- 145
by direct interaction with p68 RNA helicase and Drosha. Drosha has
also been shown to interact with DGCR8 to form a complex called mi-
croprocessor, which plays a key role in modulating the homeostasis
of miRNA expression [75]. A previous study reported that oxidative
stress-responsive heme oxygenase-1 modulates miRNA expression by
downregulating DGCR8. Moreover, DDR stimulates the processing of
miR-34 family by tyrosine kinase ABL-dependent tyrosine phospho-
rylation of DGCR8 [76].

2.3. DDR regulates miRNA degradation

In addition to the major function of DDR in the regulation of
transcriptional and post transcriptional expression of miRNAs, a re-
cent study has suggested that one of the main causes of miRNA
downregulation is increase in the degradation of miRNAs following
DNA damage. Two exoribonuclease are responsible for the degra-
dation of the single-stranded miRNA, the 50′–30′ exoribonuclease
XRN2 or 30′–50′ exoribonuclease human polynucleotide phosphory-
lase [77,78]. Previous studies have reported that pre-miRNA degra-
dation can be facilitated by binding to protein components such as
MCPIP1. A recent study showed that the nucleotidyl transferase PAP
associated domain containing 5 (PAPD5) and the poly (A)- specific ri-
bonuclease PARN can work in concert to mediate 30′ adenylation and
subsequent degradation of miR-21 [79]. However, further research is
required to elucidate the detailed mechanisms by which DNA damage
can induce miRNA turnover and degradation.

3. Role of miRNAs in regulation of DDR

Since most of the miRNA-related processes such as expression,
transcription maturation and degradation are regulated by DDR, it is
not surprising that bidirectional regulatory pathways exists between
miRNAs and DDR. One of the first studies implicating miRNAs in
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the regulation of DNA damage is that the knockdown of the primarily
components of miRNA-processing systems such as Ago2 and Dicer,
causes a significant reduction in altered checkpoint response and cell
survival after exposure to DNA damaging agents such as UV and cis-
platin [80]. It was well-known that miRNAs are involved in the con-
trol of gene expression in a post-transcriptional manner. For that pur-
pose, miRNAs bind to complementary sequences in target mRNAs,
and degrade or inhibit the translation of targets. It is becoming more
and more elaborate that sensors, transducers and effectors in DDR are
directly and indirectly regulated by miRNAs [41].

miRNAs directly regulate DDR by modulating the expression of
multiple components of the DDR pathway. Alternatively, they indi-
rectly fine-tune the expression of key regulatory proteins such as p53
by interacting with other signaling pathways [81]. Table 1 provides a
comprehensive up-to-date list of miRNAs which regulate the different
components of DDR.

In this line, it has been reported that almost all principal com-
ponents of the DDR signaling pathways contain conserved miRNA
target sites. Initial sensor proteins for the DDR including H2AX,
MSH2 and MLH1 are subject to regulation by different miRNAs.
Accumulating findings indicate that miRNAs can also act as signal
transducers by directly targeting protein kinases involved in DDR.
For example, following DSB DNA damage, the transducer ATM, is
activated by autophosphorylation on serine residues and this activ-
ity is regulated by the WIP1 phosphatase in DDR. In response to
DDR transducers, a wide array of proteins known as DDR effectors
work together in a coordinated manner to determine cell fate after
DNA damage including those proteins functioning in cell cycle ar-
rest, DNA repair, and apoptosis [82]. miRNAs can also directly tar-
get DDR effectors. As shown in Table 1, miRNAs can control cell
cycle progression after DNA damage by targeting BRCA1, BRCA2,
RAD23B, RAD51, RAD52, RAD18, RPA1, RBSP3, Ku70, CtIP,
REV1, REV3L, FANCG, MDC1, and PRKDC.

Finally, miRNAs also act by indirectly fine-tuning the expression
of essential components of the DNA repair pathways, such as p53,
p53, p21, p27, CHK1 and other effectors which have major func-
tions in the regulation of cell cycle checkpoints and apoptosis. This
fine-tuning takes place by down-regulation of upstream regulators of
mentioned proteins (Table 2).

4. miRNAs as therapeutic target in cancer: DNA damaging
agents

Compounds targeting DDR and DNA repair machinery are very
promising for cancer therapy and overcoming cancer chemoresistance.
Particularly, the undeniable interaction of miRNAs and DDR can pro-
vide a promising target for increasing the efficacy of conventional
cancer therapy with DNA damaging agents [39]. This is brought
about by the active role of miRNAs in modulating DDR by targeting
DDR components to subsequently regulate cellular response to DNA
damaging agents. Therefore, miRNAs may improve the outcome of
chemotherapy, particularly through the regulation of the DDR. A long
list of miRNAs have so far been implicated in affecting chemotherapy
sensitivity, either by suppressing DNA repair or enhancing DNA dam-
age tolerance in different cancer types (Table 3).

Furthermore, miR-24 or miR-138 promote cellular sensitivity to
IR through inhibition of H2AX expression [83,84]. Several other ex-
amples of IR-responsive miRNAs include miR-521, miR-127, let-7g,
miR-125a, miR-189, and microRNA-1323 which regulate radio-sensi-
tivity by targeting DDR genes [99,162,163].

As mentioned earlier, a number of miRNAs can target various
essential genes involved in DDR; therefore, modulating endogenous

Table 1
miRNAs involved in the regulation of DDR.

DDR gene Function in DDR miRNA Ref.

DDR sensors
H2AX Histone H2A variant, Following DNA

damage, extensively phosphorylated by
ATM and ATR

miR-24,
miR-138,
miR-542-2p

[83–85]

MSH2 dimerizes with MSH6 to form the MutSα
complex, which is involved in base
mismatch repair and short insertion/
deletion loops

miR-155,
miR-21

[86,87]

MLH1 One component of a system of seven
DNA mismatch repair (MMR) proteins

miR-155 [86]

DDR transducers
ATM Is activated by autophosphorylation on

serine residues upon DNA damage and
phosphorylates several target proteins

miR-421,
−18a, −26a,
−101, −181,
−100, −27a,
−223, −181a,
185, −214

[11,88–98]

DNA-PK Is induced upon detection of DSBs,
phosphorylates itself and other
substrates

miR-101,
miR-1323

[90,99]

DDR effectors
BRCA1 Is part of a complex that repairs DSBs in

DNA and interacts with the DNA
mismatch repair protein MSH2

miR-182,
−NA146a,
−146-5p, −1,
−99, −146a,
−9

[100–104]

BRCA2 binds to the single strand DNA and
directly interacts with the recombinase
RAD51

miR-1245,
−210, −373

[105,106]

RAD23B Is involved in nucleotide excision repair
(NER)

miR-373 [107]

RAD51 Plays a major role in homologous
recombination of DNA during double
strand break repair

miR- 96,
−99a, −100

[102,108]

RAD52 Is important for DNA double-strand
break repair and homologous
recombination, interacts with RAD51

miR-210 [107]

RAD18 Is a ubiquitin-conjugating enzyme
required for post-replication repair of
damaged DNA.

miR-145 [109]

RPA1 Binds and stabilizes single-stranded
DNA intermediates

CU1276 [110]

RBSP3 A gene family of small C-terminal
domain phosphatases that may control
the RNA polymerase II transcription
machinery

miR-100 [111]

Ku70 Binds to DNA double-strand break ends
and is required for the non-homologous
end joining (NHEJ) pathway of DNA
repair

miR-124 [112]

CtIP modulates the functions ascribed to
BRCA1 in transcriptional regulation
and DNA repair

miR-335 [113]

REV1 Functions as a scaffold that recruits DNA
polymerases involved in translesion
synthesis (TLS) of damaged DNA

miR-96 [108]

REV3L Interacts with Rev7 to form Pol ζ, a B
family polymerase.

miR-25, −32 [114]

FANCG DNA repair protein that may operate in a
post-replication repair or a cell cycle
checkpoint function. May be implicated
in interstrand DNA cross-link repair and
in the maintenance of normal
chromosome stability

miR-23a [115]

MDC1 Is a regulator of the Intra-S phase and the
G2/M cell cycle checkpoints and
recruits repair proteins to the site of
DNA damage

miR-22 [116]

miRNA expression may be a promising strategy to reverse chemo-re-
sistance in cancer therapy. Ectopic expression of mature miRNAs
or their precursors can result in miRNA upregulation. On the other
hand, using anti-miR oligonucleotides or miRNA sponges, which ex
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Table 2
miRNAs involved in the regulation of cell cycle checkpoints and apoptosis.

DDR gene Function in DDR miRNA Ref.

P53 The guardian of the genome,
because of its role in
conserving stability by
preventing genome mutation.

miR-125a, −125b,
−504, −25, −30d,
−33, −380-5p,
−1285, −375, −605,
−15b/16-2, −155,
−34a

[117–126]

CDC25A Is required for progression
from G1 to the S phase of the
cell cycle, but also plays roles
in later cell cycle events

miR-16, −21, −322,
−424, −503, −449a/b

[80,127–129]

WEE1 Is a key regulator of cell cycle
progression. It influences cell
size by inhibiting the entry
into mitosis, through
inhibiting Cdk1.

miR-128a, −155,
−516-3p, −195, −15

[61,130–133]

Wip1 Involved in cell cycle
checkpoint

miR-16 [134]

CHK-1 Chk1 is a central component
of genome surveillance
pathways and is a key
regulator of cell cycle and
cell survival

Let-7, miR-15, −424 [135]
[131,136]

P21 Is a potent cyclin-dependent
kinase inhibitor

miR-17, −106a/b [137,138]

c-Myc Is a multifunctional, nuclear
phosphoprotein that plays a
role in cell cycle progression,
apoptosis and cellular
transformation

miR-145, −130a,
Let-7

[139–141]

P27 Prevents the activation of
cyclin E-CDK2 or cyclin D-
CDK4 complexes, and thus
controls the cell cycle
progression at G1

miR-221, −222 [142]

E2F promotes and help carry out
the cell cycle

miR-17–92, −20a,
−34a, Let-7b,
miR-449a, miR −203

[54,143,144]

PLK1 is an early trigger for G2/M
transition

miR-100 [145]

Cyclin D Is required for progression
through the G1 phase of the
cell cycle

miR-34c [146]

Cyclin D3 is required for cell cycle G1/S
transition

miR-138 [147]

CDK2 promotes interphase nuclear
pore complex formation

miR-302, −372,
−885-5p,

[148–150]

HOXC9 Involved in cell cycle
checkpoint

miR-193a-3p [151]

CDK4/6 Is important for the G1 phase
progression and G1/S
transition of the cell cycle

miR-506 [152]

ChK2 Following DSBs prevent entry
of cells into mitosis through
inhibition of the CDC25
phosphatases

miR-191 [153]

PUMA,
Bcl2,
BAX

Involved in apoptosis miR-365, −1915,
−1271, −511

[154–157]

SIRT4 Involved in apoptosis miR-15b, −34a [126,158]
Birk2
and
Bak1

Involved in apoptosis miR-29c [159]

ING5 Interacts with TP53, inhibits
cell growth, and induces
apoptosis

miR-193a-3p [160]

PEBP4 Involved in apoptosis miR-15b [161]

press a transgene-containing multiple tandem binding sites for en-
dogenous miRNA, can suppress the expression of endogenous miR-
NAs. Protection of particular miRNAs targets can be achieved by
miRNA-masking antisense oligonucleotides [164,165]. Multiple
novel technologies have been developed for systemic delivery of
miRNA mimics or anti-miRs. They consist of adenoviral or lentivi-
ral-based delivery, nanoparticle-based delivery, and application of
chemically modified oligonucleotides [166–170]. Accumulating stud-
ies provide solid evidence for the application of miRNAs as therapeu-
tic tools or agents in cancer treatment, but the side effects of miRNA
therapy must be also considered. This is important for several reasons.
First, each miRNA may target multiple transcripts and might have un-
intended effects. Second, the high expression levels of miRNA mim-
ics may interfere with the endogenous miRNAs or siRNAs by binding
and saturating the RISC complex. As a result, the safety of miRNA
formulations needs to be extensively investigated in disease models.

5. Conclusions and perspectives

We have reviewed the current knowledge about the interactions
of miRNAs with the DDR system, discussing that DDR can affect
miRNA biogenesis in the expression, transcription, maturation or
degradation levels. On the other hand, different miRNAs have been
shown to directly or indirectly change the expression of different com-
ponents in DDR. As such, considering the importance of DNA dam-
age repair in cancer, miRNAs are emerging as important targets which
can be manipulated by drugs to eradicate cancer by damaging cancer
cell DNA. Further understanding of the molecular cross-talks between
DDR and miRNAs will provide an invaluable input to the drug dis-
covery campaigns around the world, hopefully in the coming years.
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Table 3
MicroRNAs and their DDR targets involved in response to chemotherapeutic agents.

miRNA Targets Cancer Chemotherapeutic agents Effect Ref.

miRNA-138 ERCC1, H2AX NSCLC cells, osteosarcoma cells Platinum agents, camptothecin Chemo-sensitivity [83,171]
miRNA-182 BRCA1, CHEK2 Embryonic kidney cells,

breast cancer cells
cervix adenocarcinoma cells

PARP inhibitors Chemo-sensitivity [11]

miRNA-181a/b BRCA1, ATM,
BCL2

Breast cancer cells, CLL PARP inhibitors,
platinum agents,
fludarabine

Chemo-sensitivity [172,173]

miRNA-181a BAX Breast cancer cells genotoxic Chemo-resistance [60]
miRNA-155 WEE1, RAD51 Epidermoid carcinoma cells,

triple-negative breast cancer,
CLL

Platinum agents,
taxanes, anthracyclines

Chemo-resistance
Chemo-sensitivity

[130,174–176]

miRNA-15 CHEK1, WEE1 Epidermoid carcinoma cells Platinum agents Chemo-resistance [130]
miRNA-96 RAD51, REV1 Breast cancer cells,

osteosarcoma cells,
ovarian cancer cells and tissue,
cervix adenocarcinoma cells

Platinum agents,
PARP inhibitors

Chemo-sensitivity [108]

miRNA-107 RAD51 Breast cancer cells PARP inhibitors Chemo-sensitivity [177]
miRNA-221/222 RAD51 Breast cancer cells, CLL PARP inhibitors, fludarabine Chemo-sensitivity

Chemo-resistance
[177,178]

miRNA-25/32 REV3L Burkitt’s lymphoma cell,
lung cancer cells

Etoposide, camptothecin, PARP inhibitors Chemo-sensitivity [179]

miRNA-125b TP53, BAK1 Breast cancer cells Taxanes Chemo-resistance [180]
miRNA-34a SIRT1, BCL2 Prostate cancer cells,

breast cancer cells
Taxanes Chemo-resistance [181,182]

miRNA-21 MSH2, MSH6 Colon cancer cells,
glioblastoma cells,
breast cancer cells,
lung adenocarcinoma cells,
pancreatic adenocarcinoma,
CLL

5-FU, anthracyclines,
taxanes, platinum agents,
gemcitabine, fludarabine,
cyclophosphamide,
rituximab

Chemo-sensitivity
Chemo-resistance

[87,183–187]

miRNA-451 BRCA1 Breast cancer cells Anthracyclines Chemo-resistance [188]
miRNA-146 BRCA1 Breast cancer cells Platinum agents Chemo-resistance [178]
miRNA-203 ATM Colorectal cancer cell lines and tissues Platinum agents Chemo-resistance [189]
miRNA-29b Mcl-1 Ovarian cancer Paclitaxel Chemo-sensitivity [190]
miRNA-27a RKIP Lung adenocarcinoma cells Cisplatin chemoressitance [191]
miR-145 RAD18 colorectal cancer 5-FU Chemo-sensitivity [109]
miR-193a-3p HOXC9

PSEN1
Bladder cancer Pirarubicin

Adriamycin Epirubicin Hydrochloride,
Cisplatin

Chemo-resistance
Chemo-sensitivity

[151,192]

miR-320 FOXM1 Human colon cancer cells 5-FU and Oxaliplatin Chemo-sensitivity [193]
miR-31 KCNMA1 Ovarian cancer Cisplatin Chemo-resistance [194]
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