A Single Nucleotide Polymorphism in the FOXP3 Gene Associated with Behçet’s Disease in an Iranian Population

Arezoo Hosseini 1,2, Dariush Shanehbandi 3, Mehrdad Asghari Estiar 4, Saber Gholizadeh 5, Alireza Khabbazi 6, Hamidreza Khodadadi 7, Ebrahim Sakhinia 6,7, Zohreh Babaloo 1,2

1 Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
2 Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
3 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
4 Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
5 Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran
6 Connective Tissue Disease Research Center and Rheumatology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
7 Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

SUMMARY

Background: Behçet’s Disease (BD) is a rare autoimmune disease that involves the dysfunction of regulatory T cells. FOXP3 is a key transcription factor in the development and function of T reg cells. Recent studies have shown SNPs in the FOXP3 gene contribute to the susceptibility to some autoimmune disorders.

Methods: To clarify the association between the FOXP3 gene and the risk of BD, 50 patients diagnosed with BD and 50 healthy controls from northwestern Iran were genotyped by PCR-RFLP (Mun I and Pst I) for two SNPs including rs3761547 (-3499T/C) and rs3761548 (-3279 C/A) in the promoter region of the FOXP3 gene. In addition, a 506 bp nucleotide sequence of FOXP3 promoter was analyzed.

Results: The allele -3279 C/A was significantly associated with BD [p = 0.002; odds ratio (OR) = 3.841; 95% confidence interval (CI) 1.610 - 9.161]; whereas, there was no contribution of the FOXP3 polymorphism -3499T/C to BD [p = 0.084; (OR = 0.348, 95% CI = 0.101 - 1.195)]. Meanwhile, sequence analysis showed 100% similarity in both controls and BD patient groups.

Conclusions: Therefore, the SNP rs3761548 in the FOXP3 gene appears to contribute to the risk of Behçet’s disease among the northwestern Iranian population.


KEY WORDS

Behçet’s disease, single nucleotide polymorphism, sequencing, FOXP3

Correspondence:
Dr Ebrahim Sakhinia, Associate Professor
Connective Tissue Disease Research Center
Tabriz Genetic Analysis Center (TGAC)
Division of Medical Genetics
Faculty of Medicine
Tabriz University of Medical Sciences
Tabriz, Iran
Phone: +98 9356022153
Email: esakhinia@yahoo.co.uk

Dr Zohreh Babaloo, Associate Professor
Department of Immunology
Faculty of Medicine
Tabriz University of Medical Sciences
Tabriz, Iran
Phone: +98 9355472015
Email: zbabaloo@tbzmed.ac.ir

Manuscript accepted June 9, 2015
INTRODUCTION

Relapsing genital ulcers, mucocutaneous lesions, uveitis, and the manifestations including neurologic, pulmonary, and gastrointestinal involvement characterize Behçet’s diseases (BD), a multi-system auto-inflammatory syndrome [1,2]. It can involve any organs and results in notable morbidity and increased mortality [2]. BD has worldwide distribution but it has a distinct geographical distribution along the “Silk Road” that extends from the Mediterranean to far East Asia in Eurasian and Asian populations [3]. The prevalence of BD is high in countries such as Iran, Turkey, Japan, Korea, Tunisia, China, the Mediterranean and the Middle East countries [4-6]. Although the exact cause of BD remains unknown, the epidemiological findings suggest that the disease may be triggered by an infection or environmental factors in patients with a background of genetic susceptibility [4,7].

Different studies have reported that regulatory T cells (Tregs), a sub-population of T cells, are paradoxically expanded in BD [8,9]. Tregs play a central role in regulating of immune response and are essential for maintaining self-tolerance [10,11]. The FoxP family of transcription factors plays an important role in development [12] and mutation in FOXP3 is linked to autoimmune disease [13]. The transcription factor Foxp3 is an acetylated and oligomeric protein that has a key role in the Treg cell development and function [13,14].

Mutations in the human FOXP3 gene cause disease immune dysregulation, polyendocrinopathy, enteropathy, and x-linked (IPEX) syndrome [15,16]. Many researchers have reported that there are 20 mutations in FOXP3 in patients with IPEX syndrome [17,18]. Van der Vliet and Nieuwenhuis (2007) concluded that mutations in FOXP3 results in IPEX [19]. In the current study, we investigate the hypothesis that mutation in the FOXP3 gene may be involved in Behçet Disease. Therefore, we chose two SNPs in BD patients and assessed their association among BD patients and normal controls. Furthermore, we analyzed FOXP3 promoter sequences in BD patients and control groups. Further knowledge of the molecular biology of regulatory T cells will likely result in new insights for Behçet Disease control and treatment.

MATERIALS AND METHODS

Patient demographics and DNA extraction
In the current study, 100 Iranian native Azeri [50 patients with Behçet’s Disease (29 male and 21 female; mean age 34.02 ± 7.25 years) and 50 normal healthy controls (26 male and 24 female; mean age 34.42 ± 8.27 years) were analyzed. All patients were diagnosed with BD by at least two independent dermatologists. The Ethical Committee of Tabriz University of Medical Sciences (TUMS) approved the protocol of the study, which complied with the Helsinki Declaration. Written agreement was obtained from all participating individuals. Genomic DNA was extracted from whole blood by using standard salting out method. The DNA samples were each re-suspended in 30 µL of sterile TE buffer and stored at -20°C until use.

Designing Specific Primers and PCR amplification
Specific primers were designed for amplification of the region containing rs3761547 T/C and rs3761548 C/A SNPs using Oligo 5 software. BDF47 (5’- CAA TCC TCT CGC ACA CA-3’) and BDF48 (5’- CCT CTC GCT GCT CAG TGT AG -3’) were used as forward primers; and BDR47 (5’- CAC AGC CTG ACT GAC TGA CAT -3’) and BDF48 (5’-CAC AGC CTG ACT GAC TGA CAT-3’) used as reverse primers. PCR amplification was carried out in a final volume of 25 µL using a Peqlab thermal cycler. Each reaction contained 20 ng of DNA, 0.5 µM of each primer, and 12.5 µL of 2X master mix Amplicon™ (Amplicon, Herlev, Denmark). PCR conditions included an initial denaturation step at 95°C for 4 minutes, which was followed by 35 cycles of denaturation at 94°C for 50 seconds, annealing at 59°C for 50 seconds, and extension at 72°C for 80 seconds and a final extension step of 72°C for 5 minutes. PCR products were detected by 2% (w/v) agarose gel electrophoresis in TAE buffer stained with SYBR Green (DNA safe stain, Tehran, Iran).

Genotyping of the SNPs in the FOXP3 gene
PCR-RFLP for genotyping the rs3761547 (-3499T/C) and rs3761548 (-3279 C/A) polymorphisms were performed and PCR products were digested by Mun I and Pst I enzymes, respectively. Each reaction contained 7 µL of purified PCR product, 2 µL of 10X enzyme buffer, 5 units of restriction enzyme and nuclease free water up to a final volume of 20 µL. The reactions were incubated overnight at 37°C and digested products were visualized by UV trans-illumination after electrophoresis on 2% agarose gels and again stained with SYBR Green (DNA safe stains, Tehran, Iran).

FOXP3 promoter sequencing
The PCR products were subjected to sequencing in an ABI373 automatic sequencer, using the amplification primer to obtain the sequence.

Sequence analysis
The acquired sequences were double-checked with Chromas software version 2.31 and annotated following comparison with GenBank data including Basic Local Alignment Search Tool (BLAST, http://www.ncbi.nlm.nih.gov/blast/) and Mantel et al. (2006) [20]. The sequences related to control and BD patients were aligned and compared using Clustal W [21].
Table 1. Comparisons of allele and genotype frequency for the C/A and T/C, FOXP3.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Genotype frequency</th>
<th>χ² (p-value)</th>
<th>Allele frequency</th>
<th>χ² (p-value)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3279C/A</td>
<td>C/C</td>
<td>C/A</td>
<td>A/A</td>
<td>C/A</td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td>22%</td>
<td>6%</td>
<td>72%</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>Control</td>
<td>52%</td>
<td>24%</td>
<td>24%</td>
<td>64%</td>
<td>36%</td>
</tr>
<tr>
<td>−3499T/C</td>
<td>T/T</td>
<td>T/C</td>
<td>C/C</td>
<td>T/C</td>
<td>C/C</td>
</tr>
<tr>
<td>BD</td>
<td>90%</td>
<td>6%</td>
<td>4%</td>
<td>93%</td>
<td>7%</td>
</tr>
<tr>
<td>Control</td>
<td>76%</td>
<td>10%</td>
<td>14%</td>
<td>81%</td>
<td>19%</td>
</tr>
</tbody>
</table>

Between Behçet’s patient cases and healthy controls.

Figure 1. PCR amplification of rs3761547 (A) and rs3761548 (B).

RESULTS

Genomic DNA from 50 BD patients and 50 controls was extracted and amplified by specific primers. These primers amplified 619 bp and 379 bp fragments (Figure 1). −3279C/A genotype frequencies for the BD and control groups were CC:CA:AA = 22%:6%:72% and 52%:24%:24%, respectively (Table 1). The AA genotype was significantly associated with BD. In addition, the A allele frequency of 75% was present in BD patients compared to 36% of controls and was significantly associated with BD [(p = 0.002); (OR = 3.841, 95% CI = 1.610 - 9.161)]. Therefore, the C/A polymorphism in FOXP3 was associated with susceptibility to BD.

There was no contribution of the FOXP3 polymorphism −3499T/C to BD [(p = 0.084); (OR = 0.348, 95% CI = 0.101 - 1.195)]. −3499T/C genotype frequencies for the BD and control groups were TT:TC:CC = 90%:6%:4% and 76%:10%:14%, respectively (p = 0.108), whereas the frequency of T and C alleles in patients and controls was 93%:7% and 81%:19%, respectively (Table 1).

A 693 bp of FOXP3 sequences was amplified in both control and BD patient groups, while 506 bp was sequenced successfully in all samples. BLAST analysis showed 100% similarity among current study sequences and GenBank data (NG_007392). The similarity within and between the control and BD patient was 100%. Several common features of the basal promoter including a GC and a TATA box are conserved in all sequences (Figure 2).
DISCUSSION

The etiopathogenesis of BD is not defined; however, it has been shown that genetic factors such as the HLA-B51 locus and the TNF-α gene [22,23] may be implicated in the susceptibility to the disease [24,25]. Recently, the links between some single nucleotide polymorphisms (SNPs) in KIAA1529, CPVL, LOC100129342, UBASH3B, and UBAC2 genes and particular manifestations of BD has been shown [26]. In the current study,
the association between BD and rs3761547 and rs3761548 SNPs in the FOXP3 candidate gene in the Iranian population was analyzed. This is the first report demonstrating that the rs3761547 and rs3761548 alleles were associated with BD.

The correlation of rs3761547 (-3499T/C) in Celiac and Graves’ diseases and Hashimoto's thyroiditis has been analyzed [27,28]. Polymorphism in -3499T/C FOXP3 was not related to Celiac disease, whereas Wawrusiewicz-Kuryloniek et al. (2012) suggested that the -3279G/T polymorphism in the FOXP3 gene could have a protective role in predisposition to Hashimoto's thyroiditis [27,28]. A study on the association of the FOXP3 polymorphism with allergic rhinitis in a Chinese population has shown that the heterozygous allele in rs3761547 appeared significant [29]. Based on the results of the current study, it may suggests that -3279G/T polymorphism in the FOXP3 gene could have a protective role in Iranian population in Behçet’s disease.

Regarding the loss of self-tolerance leading to autoimmune diseases (ADs), a meta-analysis has investigated the FOXP3 -3279 A/C polymorphism for AD susceptibility [30]. They concluded that FOXP3 -3279 A/C polymorphism may influence AD risk, and the A allele variant carriers of FOXP3 -3279 A/C polymorphism definitively are associated with AD susceptibility [30]. However, the contribution of FOXP3 in allergic rhinitis (AR) has been studied in Hungarian female population [31]. Their results showed that females homozygous for the rare FOXP3 rs3761548 allele (A/A) were protected against AR; however, females who were either wild types (C/C) or heterozygote carriers (C/A) of the rare allele were more susceptible to AR [31]. In addition, the potential role of FOXP3 rs3761548 as a polymorphic marker for tumor progression in premenopausal breast cancer patients in Indian women was studied [32].

The results of the current study support the previous studies and indicate that FOXP3-3279 C/A polymorphism (rs3761548) may be associated with susceptibility to Behçet’s disease in the Iranian population. The chromatin accessibility is essential for many genes during T cell differentiation, like IL-4 and IFN-γ [33, 34]. However, the chromatin structure may be an important aspect of FOXP3 regulation [35]. Also, Mantel et al. (2006) showed that 245 bp upstream of TSS containing the core promoter of FOXP3 and the specific mutation of the TATA, the GC and CAAT boxes reduce activity of the core promoter [20]. Therefore, conserved sequences of these boxes in control and BD patients in the current study indicate that BD could be associated with mutation(s) outside of these boxes.

CONCLUSION

The findings of the current study provide evidence for an association between the FOXP3 gene and BD. More extensive studies with more samples are still necessary to increase our knowledge base for the FOXP3 gene and its role in BD. Such advances might also enable more appropriate exploitation of FOXP3 for the prevention, diagnosis, treatment, and monitoring of BD.

Acknowledgement:
The authors duly acknowledge the financial support provided by Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, project number 91/101.

Declaration of Interest:
There is no conflict of interest.

References:


