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Abstract Cholesterol oxidase, a flavoenzyme, catalyzes two
reactions in one active site: oxidation and isomerization. This
enzyme has been isolated from a variety of microorganisms,
mostly from actinomycetes. This enzyme has been widely
used in clinical laboratories for cholesterol assays and was
subsequently determined to have other potential applications.
Engineering of cholesterol oxidase have enabled the identifi-
cation of critical residues, and the information derived could
lead to the rational development of improved types of the
enzyme with increased stability and better functional proper-
ties. This review is the first that exclusively summarizes the
reported results on the engineering of bacterial cholesterol
oxidases aimed at improving their thermal and chemical sta-
bility, catalytic activity, and substrate specificity.

Keywords Cholesterol oxidase . Flavoenzyme . Protein
engineering . Site-directedmutagenesis . Thermostable
enzyme

Introduction

Cholesterol oxidase (3β-hydroxysteroid oxidase; EC 1.1.3.6,
cholesterol oxidase) is a member of a large family of flavin-
specific oxidoreductases that catalyzes the dehydrogenation of
the C(3)-OH of cholesterol. Interestingly, cholesterol oxidase
is a bifunctional enzyme and catalyzes the isomerization of

cholest-5-en-3-one (temporary intermediate product) to
cholest-4-en-3-one in the ensuing oxidative reaction. In
1974, Allain and coworkers described the first fully enzymatic
method for the determination of total serum cholesterol
(Allain et al. 1974). Equimolar amounts of cholest-4-en-3-
one and hydrogen peroxide are the final products of the reac-
tion shown in Fig. 1. The enzymatic reaction is performed in
the presence of nonionic detergents or higher alcohols that
form micelles, which is required to dissolve cholesterol.
Cholesterol oxidase must derive substrate from these micelles
using hydrophobic interactions (Nishiya et al. 1998). This
enzyme is a bacterial flavoenzyme and is found in two differ-
ent forms depending on the nature of the bond between the
flavin adenine dinucleotide (FAD) cofactor and the enzyme: in
cholesterol oxidase type I, the FAD cofactor is noncovalently
linked to the protein, whereas in type II, the cofactor is cova-
lently bound to the enzyme (Sampson and Vrielink 2003).
Cholesterol oxidases belong to the flavin-dependent oxidore-
ductase superfamily. This superfamily is divided into two
main families: glucose-methanol-choline (GMC) oxido-
reductase and vanillyl alcohol oxidase (VAO). The type
I cholesterol oxidases belongs to the GMC oxidoreduc-
tase family, and the type II cholesterol oxidases belongs
to the VAO family. Glucose oxidase (EC 1.1.3.4), pyra-
nose oxidase (EC 1.1.3.10), methanol oxidase (EC
1.1.3.13), aryl alcohol oxidase (EC 1.1.3.7), and choline
oxidase (EC 1.1.3.17) are the other members of the
GMC oxidoreductase family, and vanillyl alcohol oxi-
dase (EC 1.1.3.38), reticuline oxidase (EC 1.21.3.3),
alditol oxidase (EC 1.1.3.41), and prosolanapyrone-II
oxidase (EC1.1.3.42) are the other members of the
VAO oxidoreductase family (Dijkman et al. 2013).
Comparison of the three-dimensional (3-D) structure of
cholesterol oxidase with other oxidoreductases, such as
aryl alcohol oxidase, glucose oxidase, and choline
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oxidase, reveal a highly conserved active site cavity,
which is indicative of a similar reaction mechanism.
All of these enzymes possess a conserved amino acid
(GXGXXG/A) sequence known as the FAD-binding mo-
tif at the N-terminus (Goswami et al. 2013).

Although most bacterial strains secrete cholesterol oxidase
into the culture broth, certain strains synthesize the enzyme as a
membrane-bound protein. The Rhodococcus erythropolis pro-
duces both intracellular and extracellular cholesterol oxidases
(Doukyu 2009; Lashkarian et al. 2010; Sojo et al. 1997).
Cholesterol oxidase has been mostly isolated from actinomy-
cetes. Therefore, the structural and functional analyses have been
limited to the enzymes isolated from these microorganisms.
However, recent studies have reported a cholesterol oxidase from
a gram-negative bacterium, and this enzyme possesses thermal
stability and detergent and organic solvent tolerance (Doukyu
and Aono 2001; Doukyu et al. 2008). The enzymes have been
reviewed in the recent years. These reviews addressed general

aspects (Pollegioni 2009), biochemistry and structural fea-
tures (Vrielink and Ghisla 2009), physiological functions
(Kreit and Sampson 2009), biotechnological applications
(Doukyu 2009), and their use as bioconversion enzymes
or signal proteins (Aparicio and Martin 2008). The cho-
lesterol oxidase type I from Streptomyces sp. SA-COO
and Rhodococcus equi and the cholesterol oxidase type
II from Brevibacterium sterolicum were subjected to
gene manipulation procedures. In this manuscript, we
provide an exclusive update of reports that focused on
bacterial cholesterol oxidase protein engineering aimed
at heterologous expression, identification of molecular
determinants, improving the thermal and chemical sta-
bility, and altering the catalytic activity and substrate
specificity of the enzyme. We also discuss the method
for the constructing a catalytically inactive version of
cholesterol oxidase that can be used as a negative con-
trol in the studies of the physiological role and biotech-
nological applications of the enzyme.

Biotechnological and physiological importance
of cholesterol oxidases

Analytical applications

There is considerable commercial interest in the production of
cholesterol oxidase because it is widely used in the enzymatic
assay of the total and free cholesterol in clinical samples,
serum, and food (Khan et al. 2009; Molaei et al. 2014). The
enzyme is also employed in the microanalysis of steroids in
food samples and for distinguishing the steric configurations
of 3-ketosteroids from the corresponding 3β-hydroxysteroids
(Toyama et al. 2002).

Larvicidal activity

The enzyme has been shown to have larvicidal activity and
was developed in the agricultural biotechnology industry as a
pest control. The mechanism of its larvicidal action is the lysis
of the gut endothelial cells upon ingestion. These cells have a
high concentration of 3β-hydroxysterols (Purcell et al. 1993).

Microbial pathogenesis

The enzyme has been found to play an important role in bacte-
rial pathogenesis (Vrielnik 2010). Navas et al. (2001) reported
that cholesterol oxidase is a major membrane-damaging factor
produced by R. equi, a primary pathogen of horse and an op-
portunistic pathogen in humans. Moreover, several pathogenic
bacteria, including Rhodococcus (de las Heras et al. 2014),
Bordetella (Lin et al. 2010), and the fast-growing
Mycobacteria (Yao et al. 2013) need cholesterol oxidase to

Fig. 1 Mechanism of cholesterol oxidase action
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invade the host cells, perhaps because of the ability of choles-
terol oxidase to alter the physical structure of the cell membrane
by converting cholesterol to cholesten-4-en-3-one. As these
enzymes are exclusive to the bacteria and fungi, they represent
a possible target of a new class of antibiotics.

It has also been determined that cholesterol oxidase
is involved in the manifestation of certain viral (HIV)
and nonviral prion origin (Alzheimer ’s) diseases
(Kumari and Kanwar 2012). There is no mammalian
homolog of cholesterol oxidase. However, the beta-
amyloids in Alzheimer’s disease oxidize cholesterol at
various carbon groups, including the C(3)-OH group,
and catalytically produces 4-cholesten-3-one, thereby
mimicking the activity of cholesterol oxidase (Gamba
et al. 2011; Puglielli et al. 2005; Sottero et al. 2009).
Additionally, the enzyme has been shown to be involved in the
transformation of sterols and nonsteroidal compounds (Ahire
et al. 2012), analysis of the membrane structure, production of
steroid hormones precursors, and biosynthesis of the polyene
macrolide pimaricin (Doukyu 2009; Mendes et al. 2007).

Protein engineering of cholesterol oxidases

Harnessing cholesterol oxidases for applications in harsh in-
dustrial operation conditions usually require their engineering
to improve the activity or stability. Protein engineering re-
quires a good knowledge of the protein features, including
the structural conformation, activity, stability, and substrate
specificity. A good understanding of these features serves as
a solid foundation for protein design. Most cholesterol oxi-
dases contain approximately 550 amino acids with a signal
peptide of 40 to 50 amino acids (Yazdi et al. 2008). The mo-
lecular weight range of the enzymes is 47–60 kDa
(MacLachlan et al. 2000). Cholesterol oxidase enzymes work
best at a pH of 6.5–8.0 and have an optimum temperature in
the range of 40 to 60 °C (Doukyu 2009). The crystal structure
of cholesterol oxidases from different sources at high resolu-
tion has been determined (Lario et al. 2003; Li et al. 1993).
Based on function, these enzymes are composed of two do-
mains, the FAD-binding domain and the substrate-binding
domain. Structural and kinetic studies have shown that
His447 and Glu361 act as general base catalysts together with
the conserved water molecule H2O and Asn485 in type I en-
zyme (R. equi previously identified as B. sterolicum accession
no. P22637, PDB 1COY) (Lim et al. 2006). The His447,
Glu361, H2O, and Asn485 tetrad of R. equi and His441,
Glu356, H2O, and Asn480 tetrad of Streptomyces sp. is con-
served among other oxidoreductases (Fig. 2). The hydroxyl
group of the steroid substrate is linked to both the flavin ring
of the FAD cofactor and a bound water molecule via hydrogen
bonding. The critical residues composing the active site of
type II cholesterol oxidase from B. sterolicum include

Arg447, Glu475, Glu311, and Asn516. In this type of enzyme,
His121 (corresponding to His69 in mature form of enzyme) is
covalently bound to the 8-methyl group of the isoalloxazine
ring of FAD (Fig. 2) (Coulombe et al. 2001). The types I and
II of enzyme show no significant sequence identity, possess
different tertiary structure, and have different kinetics mecha-
nism and redox potentials (Vrielink and Ghisla 2009; Piubelli
et al. 2008).

In 1995, Nomura and colleagues performed the first alter-
ation of cholesterol oxidase gene. These investigators
overexpressed the genetically modified type I enzyme from
Streptomyces in E. coli. The heterologous expression of the
native enzyme failed because the codon bias has not been
considered during expression process (Nomura et al. 1995).
Increased thermostability, solvent tolerance, and alteration of
the substrate specificity of this enzyme are important for its
biotechnological applications (Pollegioni et al. 2009). High-
level production of the enzyme and the identification of amino
acid residues critical for enzyme function are other fields of
interest. Although cholesterol oxidases from various sources
have been subjected to mutational analysis, considerable at-
tention has been devoted to cholesterol oxidase type I from
Streptomyces.

Investigation of the role of amino acid residues
in oxidation and isomerization activity of cholesterol
oxidases

Site-directed mutagenesis has been widely used to identify the
key amino acid residues of cholesterol oxidase. Identification
of the role of histidine bound to FAD and the role of asparagine
and glutamate residues in the active site of the enzyme have
been the primary foci of cholesterol oxidase protein
engineering.

To differentiate the key residues contributing to oxidation
and isomerization, eight mutants of the Streptomyces sp. en-
zyme, N318A, N318H, E356A, E356D, H441A, H441N,
N480A, and N480Q, were constructed according to the pre-
dicted role of the active site residues identified by the X-ray
structural analysis (PDB 1MXT) (Yamashita et al. 1998). Of
these, the E356D mutant retained only the oxidation activity
and the mutants N480A and N480Q retained only the isom-
erization activity. Both the oxidase and the isomerase activi-
ties were completely lost in the H441A and the H441N
mutants. The 3-D structure of cholesterol oxidase (PDB
1MXT) indicates that several amino acid residues, a water
molecule, and FAD are present in the active site of the en-
zyme. The W541 has a key role in the oxidation activity of
cholesterol oxidase, and the H441 modulates the reactivity of
W541 by forming the tautomeric form of the imidazole ring of
histidine. Thus, the H441A and H441N mutations lead to the
total loss of the enzyme activity. The W541 also forms a
hydrogen bond with Asn480. Substitution of Asn480 by
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alanine disrupts this bond, and replacement of Asn480 by
glutamine increases the distance between the amino acid and
the water molecule (W541). Both of these mutants lost the
oxidation activity. Furthermore, the N318H substitution in-
creases the distance between Asn318 and His441 due to the
bulkiness of His318, disrupting the hydrogen bond linking
these amino acids and leading to reduced oxidation activity
of the cholesterol oxidase.

The carboxyl group of Glu356 is involved in electro-
static interaction with the 3-OH group of the steroid and
cooperates with W541 to catalyze the oxidation of the
substrate. The distance between the catalytic base of
cholesterol oxidase, Glu356, and the carbon-4 of the
s tero id cont ro ls the i somer iza t ion reac t ion in
Streptomyces cholesterol oxidase. Mutation of the

Glu356 to aspartic acid has no effect on the rate of
deprotonation of cholcst-5-en-3-one, but the protonation
of the dienolic intermediate became rate-limiting, possi-
bly because of the large distance (Kass and Sampson
1998). Yamashita et al. (1998) concluded that Asn318,
Glu356, and Asn480 must function cooperatively for
both reactions to proceed efficiently.

The active site of type II cholesterol oxidase from
B. sterolicum contains Glu311, Arg477, Glu475, and a
FAD covalently linked to His69 of the protein backbone
(PDB 1I19). Catalytic activity of E311L and R477A mu-
tants generated by Piubelli and coworkers was substan-
tially disrupted possibly because of steric and charge
balance alterations, respectively. Glu311 is an essential
residue involved in dehydrogenation activity of enzyme,

Fig. 2 a An overall 3-D view of the secondary structure of type I
cholesterol oxidase from Rhodococcus equi previously identified as
Brevibacterium sterolicum (accession no. P22637, PDB 1COY). The
FAD (green) and 3-beta-hydroxy-5-androsten-17-one (AND, red) are
shown in stick representation. b The tetrad residues of the type I
cholesterol oxidases active site. The isoalloxazine ring of FAD is shown

instead of the whole molecule. c An overall 3-D view of the secondary
structure of type II cholesterol oxidase from B. sterolicum (accession no.
Q7SID9, PDB 1I19). d The residues of the type II cholesterol oxidases
active site. The isoalloxazine ring of FAD is shown instead of the whole
molecule (green) (color figure online)
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but considerable activity of E311Q mutant indicates that
the carboxyl group of this amino acid is not critical for
catalysis and possibly assists appropriate arranging of
Arg477 (Piubelli et al. 2008). In an effort to study the
role of His69, an H69A mutant (PDB 2I0K) of this en-
zyme was constructed. This mutation resulted in a 35-
fold reduction in the turnover rate of the enzyme while
maintaining the isomerization of the 3-ketosteroid inter-
mediate. The redox potential of the mutant enzyme
(−204 mV) was substantially lower than that of the na-
tive enzyme (−101 mV). In the mutant enzyme, replace-
ment of the FAD with 8-chloroFAD, leading to the for-
mation of (8Cl-FAD)-H69A, increased the redox poten-
tial of the mutant enzyme (−160 mV) and enhanced the
catalytic activity 4-fold. These findings revealed that the
flavin-histidine linkage plays an essential role in the
modulation of the redox properties of the enzyme to
enhance its oxidative activity but is not required for the
catalysis (Motteran et al. 2001). This covalent bond ap-
pears to stabilize the tertiary structure of cholesterol ox-
idase because the mutant enzyme is more susceptible to
denaturation (Caldinelli et al. 2005). Furthermore, the
kinetic parameters of H121A mutant constructed by
Lim et al. showed that the decreased turnover number
of mutant is due to decease in the rate constant of flavin
reduction (Lim et al. 2006).

Investigation of substrate specificity and affinity

There is extensive amino acid sequence homology between
the cholesterol oxidases of type I from different sources,
which lead to similar structures and functions of cholesterol
oxidase variants (Fig. 3). However, the enzymes from differ-
ent sources show variations in the substrate affinity and spec-
ificity (Yue et al. 1999). The substrate affinity of cholesterol
oxidase is very important in the endpoint or rate assay of
cholesterol present in clinical samples. To identify the role
of specific amino acids in the substrate selectivity and
structure-function relationships, mutant enzymes with amino
acid substitutions have been constructed and evaluated. Most
of these studies have been performed on Streptomyces choles-
terol oxidase (Nishiya and Hirayama 1999; Toyama et al.
2002; Xiang and Sampson 2004).

Both the V145E and the G405S substitutions have been
determined to exert significant influence on the Km value of
the Streptomyces cholesterol oxidase. Modification of the sub-
strate affinity has been achieved by the screening of mutated
Streptomyces cholesterol oxidase gene subjected to in vivo
random mutagenesis (Nishiya and Hirayama 1999). The mu-
tant cholesterol oxidase has been successfully adopted for the
rate assay of serum cholesterol, whereas owing to its low Km

value for cholesterol, the wild-type enzyme could not be used

for this assay. However, the wild-type enzyme has been
employed in the endpoint assay (Nishiya andHirayama 1999).

Using site-directed mutagenesis and based on the
structural comparisons of the cholesterol oxidases,
Toyama and co-workers introduced amino acid substitu-
tions, including L117P, L119A, L119F, V145Q, Q286R,
P357N, and S379T, into the Streptomyces cholesterol
oxidase (Toyama et al. 2002). These investigators gen-
erated and evaluated 13 mutant enzymes and reported
that the L117P mutation caused the disruption of the
loop structure, rendering the cholesterol oxidase inac-
tive. The V145Q mutant showed low catalytic activity
for cholesterol and the S379T substitution led to altered
substrate specificity. Further, the S379T mutant showed
slightly larger kcat value for pregnenolone than the wild-
type enzyme (Toyama et al. 2002). The natural choles-
terol oxidase shows high specificity for cholesterol over
other 3β-hydroxysterols (Uwajima et al. 1974; Xiang
and Sampson 2004). However, when the sterols are dis-
solved in liquid-disordered lipid bilayers instead of de-
tergent micelles, variations in the activity of the sterols
tended to reduce the cholesterol preference of the en-
zyme. Using liquid-disordered lipid bilayers, a library
screening study uncovered the important role of water
molecules in determining the binding affinity of choles-
terol oxidase to similarly sized sterols. The active site
of cholesterol oxidase contains 14 water molecules.
Xiang and Sampson found that desolvation of the en-
zyme’s active site contributes to the binding activity and
specificity of cholesterol oxidase. These authors con-
cluded that in order to alter the substrate specificity, it
would be necessary to engineer the active site such that
there is one more water molecule that can only be
displaced by the desired substrate (Xiang and Sampson
2004).

Improvement of thermal stability

Harsh industrial operational conditions require highly sta-
ble and active enzymes. The thermal stability of native
cholesterol oxidase from different sources differs and is
not optimal for its use as an industrial enzyme. Following
incubation at 60–80 °C for 30 min, all commercial en-
zymes lose most of their activity (Doukyu and Aono
2001; Pollegioni et al. 2009). Several attempts have been
made to develop thermostable cholesterol oxidases via ran-
dom and site-directed mutagenesis methods (Ghasemian
et al. 2008; Nishiya et al. 1997). Such alterations are often
accompanied by additional effects on other enzyme prop-
erties such as the pH range of the enzyme activity and
enzyme kinetics (Nishiya et al. 1997).

Exploiting the power of randommutagenesis, Nishiya et al.
developed thermostable variants of cholesterol oxidase
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(Nishiya et al. 1997). Amino acid substitutions, including
S103T, V121A, R135H, and V145E, have been identified in
Streptomyces sp. SA-COO cholesterol oxidase. All of these
mutant enzymes showed greater thermal stability than the
wild-type enzyme. It is assumed that the residue at position
145 is of great importance in the thermal stability of the en-
zyme because the half-life of the corresponding mutant cho-
lesterol oxidase at 50, 55, and 60 °Cwas markedly higher. The
enhanced thermal stability of the enzyme was not attributed to
the expansion of hydrophobicity or the addition of disulfide
bridges. However, the substitution of valine with glutamic
acid led to the creation of two distinct interactions, namely, a
hydrogen bond between the replaced glutamic acid and
Asp134 and a salt bridge between this glutamic acid and
Arg147 (Nishiya et al. 1997).

Multiple point mutants of cholesterol oxidases, including
M2 (S103T and V145E), M3 (S103T, V121A, and V145E),
and M4 (S103T, V121A, R135H, and V145E), were also cre-
ated in this study. The half-lives of M2 and M3 were higher
than that of V145E, and the half-life of M4 was less than that
of V145E, M2, and M3. These results indicated that the ther-
mal stabilization effects of the site-specific amino acid modi-
fications at positions 103, 121, and 145 are additive and that
the R135H mutation had a negative impact on other modifi-
cations (Nishiya et al. 1997). This variant also showed a
boarder range of optimal pH compared with other mutants.
The newly created interactions modified the deprotonation
and protonation of the acidic and basic side chains of aspartic

acid and arginine and therefore altered the optimal pH of the
V145E mutant (Nishiya et al. 1997).

Site-directed mutagenesis has also been employed to in-
crease the thermal stability of type I cholesterol oxidase from
R. equi. The sites selected to alter should not be within the
FAD-binding domain or the active site hollow. A mutant
R. equi enzyme with Q145E amino acid substitution, which
was created based on previous random mutation studies
(Ghasemian et al. 2008; Sun et al. 2011), showed improved
thermal stability, while other properties of this enzyme were
similar to those of the wild-type enzyme. Because the protein
sequences of the cholesterol oxidase from R. equi and
Streptomyces sp. are homologous, a similar interpretation
can explain the improvement in the thermal stability of the
enzyme (Ghasemian et al. 2008; Nishiya et al. 1997; Sun
et al. 2011).

The Brevibacterium sp. cholesterol oxidase has also been
engineered to improve the thermal stability and activity.
Different single (Q153E, F128L, and S143H), double
(Q153E/F128L), and triple (Q153E/F128L/S143H) mutant
enzymes have been constructed based on the structural anal-
ysis (Sun et al. 2011). The double mutant Q153E/F128L
showed superior thermal stability and enzymatic activity than
others with an 11.6 % increase in the specific activity and a
47 % increase in the relative activity compared to the wild-
type enzyme when it was incubated for 2 h at 50 °C.
Therefore, this mutant enzyme may be attractive for industrial
applications (Sun et al. 2011). The Q153E substitution

Fig. 3 Multiple sequence alignment of cholesterol oxidases from
different microorganisms. The sequences were aligned using
ClustalW2. The alignment includes choE from Rhodococcus equi
(R. eq.; accession no. Q93JS8), choB from R. equi formerly identified
as Brevibacterium sterolicum (B. st.; accession no. P22637), choAb
Brevibacterium sp. (B. sp.; accession no. Q212N2), cho from

Rhodococcus sp. (R. sp.; accession no. Q157H4), and choD from
Streptomyces sp. (S. sp.; accession no. P12676). Mutated amino acid
residues are boxed. Red bars indicate alpha helices, and the green
arrows indicate beta strands in the secondary structure for cholesterol
oxidase (color figure online)
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resulted in the creation of a salt bridge between this glutamic
acid and Arg155. This salt bridge reduced the distance be-
tween these two amino acids, and the side chain of glutamic
acid shifted toward Arg155. This replacement also likely fa-
vored the creation a new hydrogen bond between Asp142 and
Arg155. These changes stabilized the overall structure and
improved the thermal stability of cholesterol oxidase (Sun
et al. 2011).

Modification of enzyme kinetics

In Streptomyces cholesterol oxidase, the Val121 is placed in a
hydrophobic loop, which is in the vicinity of the active site of
the enzyme. The V121A mutation changed enzyme kinetics,
perhaps due to the alteration of hydrophobic interactions of
the enzyme with the nonionic detergents used to dissolve cho-
lesterol. In other words, the mutant enzyme showed less
affinity to the detergent (Nishiya et al. 1998). While the
wild-type enzyme follows a simple Michaelis-Menten kinet-
ics, the V121A follows a sigmoidal kinetics. The authors
concluded that the interaction between the mutant cholesterol
oxidase and cholesterol is highly dependent on the concentra-
tion of the detergents. The reduced hydrophobicity of the
mutant cholesterol oxidase is responsible for the abnormal
enzyme kinetics because it would be more difficult for such
a mutant enzyme to deprive cholesterol from the micelle
formed from nonionic detergents. The mutants containing
V121Awith a sigmoidal reaction rate-substrate concentration
relationship are not suitable for enzymatic assay application.
Additionally, this mutant enzyme is more sensitive to
detergents.

To identify the factors affecting the redox potential of the
B. sterolicum cholesterol oxidase, a mutant enzyme (H121A)
was designed, and its kinetic and structural changes were
studied. This histidine residue in the B. sterolicum cholesterol
oxidase type II is covalently linked to the FAD cofactor. The
H121A mutant showed approximately 40-fold lower turnover
number compared to the wild-type enzyme (Lim et al. 2006).
Kinetic analysis of this mutant confirmed that the decrease in
the turnover number is primarily observed because of a corre-
sponding decrease in the rate constant of the flavin reduction.
Only slight changes in the 3-D structure of the protein were
reported, which include nonplanar to a planar geometry
change in the isoalloxazine ring of the FAD group (Lim
et al. 2006).

Construction of catalytically inactive mutants

Catalytically inactive cholesterol oxidase variants are general-
ly useful for studying the role of this enzyme in some bacterial
pathogenesis, for investigating the effect of membrane struc-
ture in signal transduction pathways, and for the confirmation

of the catalytic function of the active site amino acid residues
(Javid Khalili et al. 2009; Navas et al. 2001; Yin et al. 2002).

As mentioned earlier, some active site amino acid residues
function cooperatively for efficient cholesterol oxidation. The
interactions between the active site amino acid residues of
cholesterol oxidase have been evaluated by constructing the
H447E, H447Q, H447E/E361Q, and H447Q/E361Q mutants
using site-directed mutagenesis (Yin et al. 2002). The compar-
ison of the catalytic efficiency (kcat) of these mutants showed
that the double mutant H447Q/E361Q had lower (3-fold) kcat
than H447Q and the H447E/E361Q mutant had much lower
(10-fold) kcat than the H447E mutant for oxidation. Further,
for oxidation, the H447E/E361Q mutant showed much lower
(31,000-fold) kcat than the wild-type enzyme. These findings
showed that the mutation of His447 to an acidic residue
(glutamic acid) slows down the oxidation activity of the en-
zyme. Furthermore, the H447E/E361Q and H447Q/E361Q
mutants failed to convert the cholest-5-en-3-one intermediate
to cholest-4-en-3-one due to the missing carboxyl group at
position 361 (glutamine). The authors interpreted that
Glu361 could act as a general base and compensate for the
missing of His447. Therefore, to obtain an inactive cholesterol
oxidase mutant, it may necessary to mutate both His447 and
Glu361. This double mutant (H447E/E361Q)’s 3-D structure
and lipid membrane-binding affinity are identical to those of
the wild-type enzyme and may be used to examine the effects
of cholesterol-containing membranes in signal transduction
(Yin et al. 2002). To evaluate this utility of the catalytically
inactive cholesterol oxidase (H447E/E361Q), caveolae mem-
brane (concentrated by platelet-derived growth factor receptor
β) fractions were incubated with either the wild-type or the
catalytic inactive enzyme and were stimulated with PDGF.
Similar to the untreated sample, the H447E/E361Q mutant
did not alter the tyrosine phosphorylation of the neighboring
proteins, but the wild-type enzyme reduced the tyrosine phos-
phorylation (Yin et al. 2002).

A number of pathogenic bacteria exploit cholesterol oxi-
dase as a virulence factor to invade their host by altering the
integrity of the macrophage cell membrane (de las Heras et al.
2014). Navas et al. (2001) constructed an inactive mutant and
investigated cholesterol oxidase as a putative membrane-
active virulence factor of R. equi. The cholesterol oxidase
gene was inactivated by the introduction of the aacC4 gene
(apramycin resistance gene). The construct was cloned into a
plasmid vector and transformed into R. equi. Homologous
recombination between the wild-type chromosome and the
plasmid harboring the disrupted cholesterol oxidase gene re-
sulted in the complete inactivation of the chromosomal gene.
The mutational inactivation of cholesterol oxidase abolished
the cooperative (CAMP-like) hemolysis activity of R. equi.
Functional complementation via expression of the cholesterol
oxidase restored the hemolytic activity of the bacterium
(Navas et al. 2001).
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To identify the role of the active site amino acids in R. equi
cholesterol oxidase, Javid Khalili and coworkers created E361N,
E361Q, and E361D mutants by site-directed mutagenesis.
Comparedwith the wild-type enzyme, the first twomutants were
28 and 35 times respectively less active, and the latter was inac-
tive (Javid Khalili et al. 2009). These findings pointed toward the
critical role of E361 in the activity of R. equi cholesterol oxidase
and the catalytically inactive enzyme can be used as a null control
while probing the signal transduction pathways activated through
membrane binding (Yin et al. 2002).

Modification of dehydrogenase activity by altering oxygen
binding of enzyme

Enzyme-based biosensors, an alternative to instrumental ana-
lytical methods used in experimental diagnostics, are a major
tool in biotechnology. Cholesterol oxidase biosensor has great
potential as a simple and economical sensor system for the
analysis of clinical samples. However, an electrochemical bio-
sensor based on electron mediator for oxidases is essentially
influenced by dissolved oxygen. Therefore, the development
of enzyme biosensors using electron acceptors with less
oxygen-sensitive oxidases is a major goal of industries. The
amino acid residues responsible for the oxidase activity of
cholesterol oxidase have been identified by site-directed mu-
tagenesis of the oxygen-binding residues. A mutant enzyme
with V191A substitution showed 400-fold higher
dehydrogenase/oxidase activity compared with the wild-type
enzyme. This mutant offers an oxygen-insensitive enzyme for
electrochemical cholesterol oxidase biosensors (Kojima et al.
2013). Piubelli and coworkers constructed several mutant type
II cholesterol oxidases from B. sterolicum to compare the re-
activity of wild-type enzyme toward dioxygen with that of
mutants. The results showed that Glu311 plays a major role
in the dehydrogenation activity as its substitution reduced the
activity by approximately 1000-fold. Substitution of Glu311
caused a basic change in the kinetic mechanism of the reaction
of reduced enzyme with dioxygen indicating that the residue
adjusts the Glu475-Arg477 pair open and closed conforma-
tions in a gate functioning in the control of oxygen access to
the active center of enzyme (Piubelli et al. 2008).

Genetic modification of the cholesterol oxidase gene
for heterologous expression

Large-scale production of individual enzymes in wild-type
microorganisms for commercial applications, even in the par-
tially purified form, is a costly process. One approach to cut
the enzyme production cost is to construct recombinant strains
overexpressing the target enzyme. Lower cost of recombinant
cholesterol oxidase production and increased productivity lev-
el allows manufacturers to consider the preferential use of this
technique. E. coli is the most commonly used expression host

in protein production because of the viability of genetic
manipulation and availability of abundant molecular biology
tools. However, E. coli fails to actively express some heter-
ologous proteins because of the different codon usage, scheme
for protein folding, and posttranslational protein processing
such as excision of the signal peptide. Heterologous over-
expression is especially difficult in the case of some choles-
terol oxidases. Therefore, improving the expression level is a
goal of genetic modification.

To date, cholesterol oxidases from Stereptomyces sp.
(Murooka et al. 1986; Nomura et al. 1995), Brevibacterium
sp. (Fujishiro et al. 2002; Ohta et al. 1992; Sampson and Chen
1998; Volonte et al. 2010; Wang and Wang 2007),
Burkholderia cepacia (Doukyu and Aono 2001),
Chromobacterium sp. (Doukyu et al . 2009), and
Rhodococcus sp. (Ghasemian et al. 2009) have been success-
fully cloned and overexpressed. Both types I and II enzymes
(respectively containing noncovalently and covalently bound
FAD) have been produced in E. coli cells.

The first heterologous expression of cholesterol oxidase
was reported in 1991. Although the Streptomyces sp. SA-
COO cholesterol oxidase gene was cloned and expressed
extracellularly in Streptomyces lividans (Molnár et al. 1991),
the activity of the enzyme was low. Furthermore, the
wild-type sequence of the gene failed to express the protein
in E. coli. To overcome this problem, the native codons
for the ribosome-binding site (RBS) and the signal peptide
were replaced with favorable codons of E. col i
(Nomura et al. 1995). Although this permitted the expression
of the recombinant enzyme, the signal peptide was
cleaved closer to the N-terminus (Ala20 and Ala21) in
E. coli than in Streptomyces (excised between Ala42
and Asp43).

In this regard, the expression of cholesterol oxidase from
B. sterolicum in E. coli was improved up to 60-fold through
genetic modification and culture condition optimization
(Sampson and Chen 1998). With the help of a long (99 nucle-
otides) forward primer and a normal reverse primer, the inves-
tigators synthesized a 681-bp DNA fragment of the N-terminal
sequence of the B. sterolicum cholesterol oxidase gene using
PCR. To adapt the codon usage for improved heterologous
expression in E. coli, in the design of the long primer, they
replaced the codons of the first 21 amino acids with high-
expression E. coli codons. The N-terminal sequence of the
wild-type cholesterol oxidase gene was substituted with syn-
thetic fragment using restriction enzymes. The mutant gene
expressed under the T7lac promoter and the culture condition
optimized for overexpression. This strategy improved the het-
erologous expression of the B. sterolicum cholesterol oxidase
up to 60-fold (Sampson and Chen 1998).

To overexpress the type II cholesterol oxidase from
B. sterolicum, the same strategy was also implemented
(Volonte et al. 2010). Full-length cDNA of mature
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B. sterolicum cholesterol oxidase was synthesized according
to the 3-D structure, with an extra 27-nucleotide sequence
at the 5′ end of the cDNA encoding a tail peptide
(MSNHHHGHA) for crystallization of the protein. Codons
of the synthetic cDNA encoding the mature protein and the
production conditions, including the medium composition

and the best culture/induction conditions, were optimized for
expression in E. coli. Due to improved thermostability and
covalently bound FAD, the enzyme overexpressed in this
work offers a superior platform for the immobilization of cho-
lesterol oxidase for use in industrial and clinical biosensors
(Volonte et al. 2010).

Fig. 4 Some of the mutated residues in cholesterol oxidases were shown
in 3-D structure of the enzyme. a Type I cholesterol oxidase from
Streptomyces sp. (S. sp.; accession no. P12676, PDB 1MXT). In a, the
isoalloxazine ring of FAD is shown instead of the wholemolecule. b Type

I cholesterol oxidase from Rhodococcus equi formerly classified as
Brevibacterium sterolicum (B. st.; accession no. P22637, PDB 1COY).
c Type II cholesterol oxidase from Brevibacterium sterolicum (B. st.;
accession no. Q7SID9, PDB 1I19)
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Conclusions and perspectives

Protein engineering of microbial cholesterol oxidases shed
light on some critical points. Tables 1 and 2 respectively sum-
marize all residue changes of type I and II enzymes reported in
the literature. Some of these residues are shown in the corre-
sponding 3-D structure of the protein in Fig. 4. The most
important active site residues of the type I enzyme from
Streptomyces sp. are Glu631, His447, and Asn485. These res-
idues have key role in the oxidase and isomerase activity of
cholesterol oxidase. Substitution of His441, which controls
the reactivity of active site water, resulted in complete loss
of enzyme activity. The carboxyl group of Glu356 is also
essential for oxidation. Although the oxidation activity was
enhanced in E356D mutant due to noninterference with the
function of water, the isomerization activity was lost owing to
short side chain of the aspartic acid. Asn480 is not involved in
isomerization reaction and is hydrogen bonded to W541 in
active site (Yamashita et al. 1998). The V145E, V121A, and
S103T mutations improved the thermal stability of the
Streptomyces sp. enzyme. These mutations had a synergistic
effect in combination and also yielded a broader optimal pH
range. Additionally, the V121A mutation altered the enzyme
kinetics (Nishiya et al. 1997). The V191A mutant had very
low oxidase/dehydrogenase activity ratio and minimal oxygen
sensitivity (Kojima et al. 2013). Therefore, this enzyme is an
ideal candidate for use in electrochemical biosensors. The
putative active site residues of the type I enzyme from
R. equi are Glu631, His447, and Asn485, which can be altered
for the construction of catalytic inactive variants (Yin et al.
2002). The Q153E/F128L mutation of the Brevibacterium sp.
type I enzyme improved the catalytic activity at 50 °C when
compared with the wild-type enzyme (Sun et al. 2011). The
His69 residue is covalently linked to FAD in type II choles-
terol oxidases, stabilizing the 3-D structure of the enzyme
(Motteran et al. 2001; Caldinelli et al. 2005). The largest
decrease in kcat values of some mutated forms of this enzyme
were observed for mutants at positions Glu311 and Arg477
particularly when the charge was removed (Piubelli et al. 2008).

In conclusion, as revealed by the analysis of engineered
cholesterol oxidases, the combined use of several different di-
rected evolution approaches is likely to be necessary for im-
proving multiple target properties of an enzyme. Furthermore,
the highly conserved 3-D structure of flavoprotein oxidases
suggests that the structure-based rational design and protein
engineering strategies used for cholesterol oxidases could also
be applied for the improving the properties of other industrial
oxidoreductase enzymes. It is expected that in the upcoming
years, the use of molecular dynamics and quantum mechanics
simulations along with rational experimental design will lead to
the development of cholesterol oxidases with desired properties
and advance our knowledge of the molecular mechanisms un-
derlying the behavior of this group of oxidoreductases.
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