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A B S T R A C T

Candidiasis is a major challenge among renal transplant recipients (RTRs) worldwide and is associated with high
morbidity and mortality rates. Fluconazole is the most commonly used agent for Candida infections. However,
frequent relapse and treatment failure are still reported among patients affected with this infection. In the
present study, Candida species obtained from RTRs were characterized based on conventional and molecular
assays. Furthermore, the antifungal susceptibility profiles of these species were determined. This study was
conducted on a total of 126 RTRs within 2012–2016. The patients were categorized according to the referenced
diagnostic criteria. The identification of Candida species was accomplished based on conventional examination,
assimilation profile test, and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)
method. The minimum inhibitory concentrations (MICs) of amphotericin B, fluconazole, itraconazole, vor-
iconazole, posaconazole, and caspofungin were determined based on the guidelines of Clinical and Laboratory
Standards Institute. The patients with Candida infection were diagnosed with urinary tract candidiasis (n=17),
peritonitis (n=8), intra-abdominal candidiasis (n= 6), candidemia (n= 4), hepatosplenic candidiasis (n=3),
and Candida pneumonia (n=3). A total of 41 Candida isolates, including C. albicans (n= 18), C. famata (n=8),
C. kefyr (n=4), C. tropicalis (n=4), C. parapsilosis (n=3), C. glabrata (n= 2), and C. lusitaniae (n=2), were
isolated from 32.5% (41/126) renal transplant recipients. Fluconazole-resistance was observed in seven isolates,
entailing C. albicans (n=6) and C. tropicalis (n= 1). Fluconazole MIC for C. lusitaniae isolates was above the
epidemiologic cut-off value (4–16 μg/ml). Furthermore, MIC range values of fluconazole against C. famata and C.
kefyr were obtained as 4–32 μg/ml and 4–8 μg/ml, respectively. Posaconazole exhibited potent activity against
Candida isolates, followed by caspofungin. The identification of Candida species, together with susceptibility
testing, provides important data about the geographic trends of the fluconazole-resistance profiles of Candida
species. It is necessary to maintain a consistent method for the implementation of early diagnosis and adoption of
treatment regimen.

1. Introduction

Invasive fungal infections (IFIs) are associated with significant

morbidity and mortality, especially among renal transplant recipients
(RTRs) [1–3]. The RTRs are highly susceptible to the IFIs mainly caused
by Candida species due to the prolonged use and high dose steroids,
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long-term immunosuppressive treatment, difficulty in primary diag-
nosis, and ineffective therapy [3,4]. Although C. albicans is the main
agent of nosocomial fungal infections, non-Candida albicans Candida
(NCAC) species have emerged in the recent years with diverse virulence
and susceptibility profiles [5–8]. Owing to the increased use of azoles
and echinocandins for prophylactic and therapeutic purposes, re-
sistance to these agents in Candida species has recently become a ser-
ious clinical challenge [9,10]. Although there is no evidence regarding
the efficacy of antifungal drugs in the prophylaxis and treatment of
Candida infections in RTRs, they may significantly improve clinical
outcomes and reduce healthcare costs [11]. In addition, prophylaxis
and therapy may be important factors in explaining the observed
changes in the distribution of etiologic agents and susceptibility pattern
of each Candida species in different countries [12]. Azoles are ther-
apeutic agents for Candida infections, among which fluconazole is the
most commonly used agent with low toxicity, high solubility, and wide
tissue distribution [10,13–16]. However, the use of fluconazole as
prophylactic and treatment regimen in RTRs has been associated with
frequent cases of relapse and treatment failure, which can be a potential
risk factor leading to the gradual development of resistant species [17].
Candida infections can be a major challenge given the lack of effective
therapeutic options and limited management experience. Consequently,
potent antifungal agents and alternative antifungal strategies, including
combination therapy, can be considered as effective approaches to
improve the management of Candida infections [18,19]. Selected
combinations of clinically licensed drugs (e.g., statins and antifungal
agents) might be potential alternatives for the therapeutic management
of these infections. However, all these approaches have remained at the
laboratory experimental phase up to now [20,21]. The isolation, iden-
tification, and susceptibility testing of Candida species in RTRs have
become an increasingly crucial issue for the management of fungal
infections given the increased drug resistance scenario occurring during
the last decades worldwide [10]. Therefore, the current study was
conducted to characterize Candida species obtained from RTRs based on
conventional and molecular assays to determine the epidemiology of
Candida species. In addition, the present study sought to investigate the
in vitro susceptibility profiles of six marketed antifungal drugs, as fol-
lows amphotericin B, fluconazole, itraconazole, voriconazole, posaco-
nazole, and caspofungin against obtained Candida isolates.

2. Materials and methods

2.1. Patients

This study was conducted on 126 RTRs at the Nephrology and
Kidney Transplant Research Center, Urmia University of Medical
Sciences, Urmia, Iran, during 2012–2016. Data collected for the pa-
tients included age, gender, risk factors, clinical presentation, and
mycological sample sites. The patients were diagnosed on the basis of
clinical examination, and Candida infection was confirmed by direct
examination, culture method, and histopathology [22–24]. The patients
were grouped into candidemia, urinary tract candidiasis, Candida
pneumonia, hepatosplenic candidiasis, intra-abdominal candidiasis,
and peritonitis. A definitive diagnosis of invasive candidiasis was de-
pendent on the recovery of Candida from bloodstream, peritoneal fluid
or abscess material, biopsy, and urine [22–24]. The evidence of Candida
pneumonia was based on visual inspection and histologic confirmation
with a positive culture [24]. However, the patients with superficial
fungal infections were excluded. Immunosuppressive regimen induc-
tion therapy consisted of the administration of cyclosporine (6mg/kg)
or tacrolimus (0.1–0.15mg/kg) and mycophenolate mofetil (2 g/day)
or mycophenolate sodium (720mg bid) before the surgery, in addition
to intravenous (IV) methylprednisolone pulse therapy (10–15mg/kg)
performed daily 1 h before the operation and after the operation for 3
days (triple therapy). The highly sensitive recipients and/or those sus-
pected with delayed graft function were given prophylactic

cytomegalovirus (CMV) and IV thymoglobulin (1mg/kg daily up to 7
days), accompanied with IV gancyclovir (5mg/kg bid), followed by
valgancyclovir (900mg/day), and Pneumocystis jirovecii prophylaxis
(trimethoprim-sulfamethoxazole). This study was approved by the Re-
search and Ethics Committee (nr. 2094) of Urmia University of Medical
Sciences, Urmia, Iran. Written informed consent was obtained from the
patient's next of kin for the publication of this report. The informed
consent included the acceptance of policies for the management of
personal information, procedures for data collection, and data man-
agement.

2.2. Fungal isolates/phenotypic characterization

The collected samples consisted of 41 isolates/patients from a
variety of specimens, including urine (n= 17), biopsy (n= 9), perito-
neal fluid (n=8), blood (n=4), and transbronchial lung biopsy
(n= 3). The samples were sent to the mycology laboratory and ex-
amined by wet-mounted observation, followed by inoculation on
Sabouraud dextrose agar (SDA, Difco) at 25 °C and 35 °C for 48 h. The
grown isolates were preliminarily identified by standard mycological
procedures, including colony color on CHROMagar Candida medium
(CHROMagar Company, Paris, France), microscopic morphology on
Corn Meal Agar (CMA, Difco, laboratories, Detroit, Mich., USA) with
1% Tween 80, and germ tube tests in serum at 37 °C for 2–3 h in dark.
Additionally, the assimilation profile of all yeast isolates was performed
by commercially available API strips (ID32C; bioMérieux, Marcy
I'Etoile, France). All identified isolates were suspended in tryptic soy
broth medium (TSB, Scharlau, Spain) containing 2% peptone, 2% glu-
cose, and 20% glycerol at−80 °C for extra analysis and deposited at the
reference culture collection of the Cellular and Molecular Research
Center (CMRC), Urmia, Iran.

2.3. Molecular investigation

Genomic DNA was extracted from 2-day-old cultures as previously
described [25]. Polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP) method was used for species identification
[25,26], briefly, the PCR amplification of ITS-rDNA region was
achieved using the universal primers ITS1 (5ʹ-TCCGTAGGTGAACCTG
CGG-3ʹ) and ITS4 (5ʹ-TCCTCCGCTTATTGATATGC-3ʹ). The amplifica-
tion was performed with a cycle of 5min at 94 °C for primary dena-
turation, followed by 35 cycles at 94 °C (1min), 56 °C (1min), and 72 °C
(1min) with a final extension step at 72 °C for 7min. Subsequently, the
PCR products were digested by restriction enzyme MspI at 37 °C for 4 h.
The size of DNA fragments was directly determined with the compar-
ison of molecular size marker and distinct banding patterns [17,18].

2.4. Antifungal susceptibility testing

Based on the guidelines of Clinical and Laboratory Standards
Institute (CLSI) [27,28], the antifungal agents were diluted in RPMI-
1640 medium (Sigma Chemical Co.) buffered to pH 7.0 with 0.165M
morpholinepropanesulfonic acid (MOPS) (Sigma) with L-glutamine
without bicarbonate to yield two times their concentrations and dis-
pensed into 96-well microdilution trays with the final concentrations of
0.063–64 μg/ml for fluconazole (Pfizer, Groton, CT, USA), 0.008–8 μg/
ml for caspofungin (Merck, Whitehouse Station, NJ, USA),
0.016–16 μg/ml for amphotericin B (Sigma, St. Louis, MO, USA), itra-
conazole (Janssen Research Foundation, Beerse, Belgium), voriconazole
(Pfizer Central Research, Sandwich, United Kingdom), and posacona-
zole (Schering-Plough, Kenilworth, NJ). The plates were stored at
−70 °C until they were used. Briefly, homogeneous suspensions were
measured spectrophotometrically at the wavelengths of 530 nm to a
percent transmission within the range of 75–77. Therefore, the final
densities of the stock inoculum suspensions of the isolates ranged
within 1× 103–3×103 CFU/ml, as determined by quantitative colony
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counts on Sabouraud glucose agar (SGA, Difco). After incubation at
35 °C for 24 h, minimum inhibitory concentration (MIC) values were
visually determined. The MIC endpoints were determined with the aid
of a reading mirror and defined as the lowest concentration of drug that
prevents any recognizable growth (i.e., exerts 100% inhibition for
amphotericin B) or significant (≥50%) growth diminution levels (all
other agents), compared with the growth of a drug-free control. The
MIC90 and MIC50 values were defined as the lowest concentration of the
antifungals at which 90% and 50% of the isolates were inhibited, re-
spectively. The MIC50, MIC90, and geometric mean (GM) MIC were not
determined when less than ten isolates were available. The fluconazole-
resistant isolates were determined according to the new CLSI clinical
breakpoint values for species-specific and non-species-specific Candida
species [28]. Candida parapsilosis (ATCC 22019) and C. krusei (ATCC
6258) strains were used as the quality control isolates for each testing
run.

2.5. Statistical analysis

The data were recorded using Microsoft Excel 2007 (Microsoft Corp,
Redmond, WA, USA) and analyzed using SPSS software (version 16;
SPSS Inc., Chicago, IL, USA). P value less than 0.05 was considered
statistically significant.

3. Results

Table 1 summarizes the clinical data of the patients. According to
the results, 56.1% (n=23) of the study population were male. The
participants had the age range of 1–65 years at the time of diagnosis and
included 3 children (1–12 years old), 5 adolescence (12–18 years old),
31 adult (18–60 years old) and 2 elderly (> 60 years old). The risk
factors were the prolonged administration of corticosteroid and im-
munosuppressive therapy, kidney transplantation, renal failure, con-
sumption of broad-spectrum antibiotics, Intensive Care Unit admission,
abdominal surgery, hemodialysis, and indwelling bladder catheters.
The patients with Candida infection were diagnosed with urinary tract
candidiasis (n= 17), peritonitis (n= 8), intra-abdominal candidiasis
(n= 6), candidemia (n=4), hepatosplenic candidiasis (n= 3), and
Candida pneumonia (n= 3). Based on the conventional and molecular
techniques, 41 isolates of Candida species, including C. albicans (43.9%)
and non-Candida albicans species (56.1%), were obtained from 126
RTRs. Among the various species identified, C. albicans (n= 18, 43.9%)
was the leading agent, followed by C. famata (n= 8, 19.5%), C. kefyr
(n= 4, 9.7%), C. tropicalis (n= 4, 9.7%), C. parapsilosis (n= 3, 7.3%),
C. glabrata (n= 2, 4.8%), and C. lusitaniae (n= 2, 4.8%). Table 2
summarizes the MIC range, MIC50, MIC90, and GM MIC of six antifungal
drugs against seven different species. Fluconazole-resistant isolates
(n=7, 17%) were determined according to the new CLSI species-spe-
cific and non-species-specific Candida species clinical breakpoints
[27,28], including C. albicans (n= 6) and C. tropicalis (n= 1). Candida
lusitaniae isolates showed a fluconazole MIC above the epidemiologic
cut-off value (ECV; 4–16 μg/ml) according to the ECVs in antifungal
susceptibility testing and interpretation for uncommon yeasts [29,30].
In addition, the MIC range values of fluconazole against C. famata and
C. kefyr were 4–32 μg/ml and 4–8 μg/ml, respectively. In terms of the
GM MIC values, posaconazole (0.02 μg/ml) exhibited potent activity
against C. albicans isolates, followed by caspofungin (0.04 μg/ml). The
widest range and highest MIC90 values for C. albicans against flucona-
zole were 0.25–64 μg/ml and 8 μg/ml, respectively. In addition, C. fa-
mata isolates appeared to be highly resistant to fluconazole (n=3,
MIC90= 16 μg/ml), and fluconazole MIC was 3-log2-dilution steps less
active than amphotericin B MIC, which in turn was 5-log2-dilution and
7-log2-dilution steps less active than caspofungin and posaconazole,
respectively. On the other hand, MIC ranges of fluconazole against C.
kefyr (4–8 μg/ml), C. tropicalis (1–8 μg/ml), C. parapsilosis (1–2 μg/ml),
C. glabrata (1–4 μg/ml), and C. lusitaniae (4-16 μg/ml) were not Ta
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significantly different (P > 0.05). Based on the findings, posaconazole
and caspofungin were more active than other antifungal agents.

4. Discussion

Invasive fungal infections have been associated with significant
morbidity and mortality in the organ transplant recipients. In this re-
gard, candidiasis is the most common IFIs among the RTRs
[1–3,31–33]. In line with the other studies, in the present research, C.
albicans (43.9%) was the main species isolated from RTRs [3,8,34].
Nevertheless, NCAC have been concerned as the etiological agents of
candidiasis [35–37]. In the current study, the most common NCAC
species was C. famata, followed by C. kefyr and C. tropicalis. It seems
that the alteration of C. albicans to non-Candida albicans species may be
associated with the use of fluconazole for prophylactic regimen and the
development of fluconazole-resistant isolates [38]. However, intrinsic
resistance to fluconazole and echinocandins can be noted as another
reason for the enhanced prevalence of NCAC isolates [39]. In addition,
the use of medical devices and improvement of the diagnostic tools
available for the identification of Candida species may be other factors
[40,41]. Susceptibility testing may help to choose an appropriate
therapy and improve the outcome of infections. Moreover, the proper
identification of Candida species with susceptibility testing provides

significant data about geographic trends in the resistance profiles of
Candida species [42]. The data presented here suggested posaconazole
and caspofungin as active drugs against Candida species that maybe
available in the market for a short period of time. In contrast, 17% of
the isolates were resistant to fluconazole. In the current study, fluco-
nazole showed high MICs (MIC90= 16 μg/ml) against C. famata iso-
lates. In line with this finding, Pfaller et al. [43] and Beya et al. [44]
reported high MICs for azoles and polyenes agents against C. famata, C.
lusitaniae [45], and C. kefyr [46]. They also demonstrated that limited
data are accessible on the therapy against those emerging opportunistic
fungal infections, which has become a severe clinical challenge. Al-
though fluconazole is the drug of choice for prophylaxis and treatment
of patients suffering from candidiasis, the prolonged use of this agent
has contributed to the development of drug resistance in Candida spe-
cies [47]. The emergence of new species and antifungal resistance has
raised the issue of using alternative therapeutic strategies [19]. Echi-
nocandins are the recommended therapeutic options for patients with
potent activity, excellent safety profile, and favorable pharmacokinetics
[48,49]. On the other hand, micafungin is used for prophylaxis and
treatment with a broad spectrum of activity in both neutropenic and
non-neutropenic patients [13,50,51]. It seems that lower concentra-
tions of drugs cause fewer side effects and improve the treatment out-
comes. Remarkably, in vitro antifungal profiles for the non-albicans

Table 2
In vitro susceptibility of Candida species to six antifungal drugs.

Species (no.) Antifungal Drug Antifungal Drug susceptibility testing (μg/ml)

MIC range MIC50 MIC90 GM

C. albicans (n= 18) Amphotericin B 0.5–2 2 2 1.31
Fluconazole 0.25–64 4 8 3.71
Itraconazole 0.125–2 0.5 1 0.36
Voriconazole 0.032–0.5 0.125 0.5 0.16
Caspofungin 0.032–0.25 0.032 0.125 0.04
Posaconazole 0.008–0.125 0.016 0.125 0.02

C. famata (n= 8) Amphotericin B 1–4 ND ND ND
Fluconazole 4–32 ND ND ND
Itraconazole 0.032–2 ND ND ND
Voriconazole 0.016–1 ND ND ND
Caspofungin 0.016–1 ND ND ND
Posaconazole 0.008–0.25 ND ND ND

C. kefyr (n=4) Amphotericin B 1–4 ND ND ND
Fluconazole 4–8 ND ND ND
Itraconazole 0.064–1 ND ND ND
Voriconazole 0.032–0.25 ND ND ND
Caspofungin 0.032–0.125 ND ND ND
Posaconazole 0.008–0.032 ND ND ND

C. tropicalis (n= 4) Amphotericin B 0.25–2 ND ND ND
Fluconazole 1–8 ND ND ND
Itraconazole 0.032–0.125 ND ND ND
Voriconazole 0.032–0.064 ND ND ND
Caspofungin 0.032–0.064 ND ND ND
Posaconazole 0.008–0.032 ND ND ND

C. parapsilosis (n= 3) Amphotericin B 0.25–0.5 ND ND ND
Fluconazole 1–2 ND ND ND
Itraconazole 0.064–0.125 ND ND ND
Voriconazole 0.032–0.064 ND ND ND
Caspofungin 0.032–0.064 ND ND ND
Posaconazole 0.008–0.032 ND ND ND

C. glabrata (n=2) Amphotericin B 0.25–0.5 ND ND ND
Fluconazole 1–4 ND ND ND
Itraconazole 0.25–0.5 ND ND ND
Voriconazole 0.125–0.5 ND ND ND
Caspofungin 0.064–0.125 ND ND ND
Posaconazole 0.008–0.064 ND ND ND

C. lusitaniae (n= 2) Amphotericin B 0.125–1 ND ND ND
Fluconazole 4–16 ND ND ND
Itraconazole 0.25–1 ND ND ND
Voriconazole 0.125–0.5 ND ND ND
Caspofungin 0.032–0.125 ND ND ND
Posaconazole 0.008–0.125 ND ND ND

Abbreviation: MIC; Minimum Inhibitory Concentrations, GM; Geometric Mean, ND; Not Determined because less than 10 isolates.
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Candida species are relatively scarce and based on low numbers of test
strains in RTRs. One of the limitations of our study was the use of a
single center retrospective design with a small sample size. However,
we provided new data related to the local epidemiology in RTRs in
order to carry out surveillance studies targeted toward the prevention
and control of candidiasis, which would be of interest for antifungal
stewardship. To add to the existing knowledge, it is required to conduct
further studies regarding the epidemiology of Candida infections in
transplant recipients to control such infections. Fungal infections are
uncommon among kidney transplant recipients; however, these infec-
tions remain an important reason of morbidity and mortality in this
group. The identification of Candida species, together with suscept-
ibility testing, provides important data about the geographic trends of
fluconazole-resistance profiles of Candida species. In addition, it is ne-
cessary to maintain a consistent method for the implementation of early
diagnosis and determination of treatment regimen among the kidney
transplant recipients.
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