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 Facile conversion of structurally different epoxides to the corresponding β-chlorohydrins was 
carried out successfully with anhydrous ZnCl2 in CH3CN. The reactions were carried out 
within 10-50 min to give β-chlorohydrins with perfect regioselectivity and high yields (80-
97%). 
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1. Introduction 

       β-Chlorohydrins are one of the most versatile intermediates in organic synthesis to achieve a 
variety of functional groups,1 halogenated marine products,2 chiral auxiliaries,3 biologically active 
compounds4 including lipid mediators,5-9 and unnatural amino acids.10 Furthermore, protected 
chlorohydrins have found wide applications in total synthesis of natural products and steroid 
chemistry.11,12 Halohydrins are also essential substrates for preparation of a specific class of enzymes 
and halohydrin dehalogenases. They are effective in both asymmetric synthesis13 (chiral resolution of 
racemic synthons14) and bioremediation of the environment (removal of pollutants from soil, 
groundwater or waste water).15 
       
      The most common and straightforward method for synthesis of chlorohydrins involves ring opening 
of epoxides by chloride ion nucleophile. The literature review shows that HCl12, LiCl supported on 
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silicagel,16 TCT/morpholine,17 TMSCl/ZnO,18 NbCl5,19 TMSCl/[bmim][PF6],20 SiCl4/chiral bipyridine 
N,N'-dioxides,21 HCl/(salen)Co,22 TMSCl/(R)-(+)-BINOL-Ti,23 ClPPh2,24 AlCl3,25 NH4Cl/LiClO4,26 
BiCl3,27 BHBr2-SMe2,28 HX or LiX/β-cyclodextrine,29 chloride ion/halohydrin dehalogenase,30 
Cl2/phenyl hydrazine,31 ZrCl4,32 InBr3,33 TMSCl/phosphazirconocene,34 TMSCl/phosphaferrocene,35 
LiClO4,36 polyvinylpyrolidone/thionylchloride,37 and La(NO3)3·6H2O38 are some of the reagents which 
have been used for the preparation of β-chlorohydrins from epoxides. Although most of the mentioned 
methods are efficient, however, some of them suffer from disadvantages such as long reaction times, 
high cost, poor regioselectivity, difficult work-up procedure, formation of side-products and low yields. 
Thus, the introduction and development of an efficient method in this context is still demanded. 
 
        Herein, in line of the outlined strategies and our ongoing attention to the nucleophilic ring opening 
of epoxides,39-45 we wish to report the facile and regioselective synthesis of β-chlorohydrins from 
epoxides using anhydrous ZnCl2 as an efficient promoter and source of active chloride nucleophile 
(Scheme 1). 
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Scheme 1. Ring opening of epoxides with anhdrous ZnCl2  
 

2. Results and Discussion 
 
        Nowadays, one of the most urgent challenges for organic chemists is providing economical 
methods using more efficient and easily available reagents or catalysts. A literature review shows that 
though the preparation of chlorohydrins form epoxides has been achieved by various metal halides 
(LiCl, NbCl5, SiCl4, AlCl3, BiCl3 and ZrCl4), however, the capability of anhydrous ZnCl2 for 
regioselective conversion of epoxides into β-chlorohydrins has not been investigated yet. In addition, 
ZnCl2 as an easily available and inexpensive metal halide has been found wide useful applications in 
organic synthesis.46 Thus the mentioned strategies encouraged us to investigate the capability of 
anhydrous ZnCl2 for the titled transformation.  
  
       We preliminary optimized reaction conditions by performing the ring opening of styrene oxide 
with anhydrous ZnCl2 in CH3CN, EtOAc and n-hexane or under solvent-free conditions (Table 1). 
Investigation of the results revealed that the kind of solvent, temperature of the reaction and the amount 
of ZnCl2 dramatically influence the rate of transformation. Entry 1 shows that using the molar 
equivalents of 1:1 for epoxide/ZnCl2 in CH3CN and room temperature condition was the optimums to 
afford 2-chloro-2-phenylethanol (α-attacked) in perfect regioselectivity and efficiency. In addition, the 
temperature effect on the kind of resulted product is noteworthy: when the reaction was carried out 
under reflux conditions, 2-chloro-2-phenylacetaldehyde was obtained as a sole product in high yield 
(entry 4).                            
          
        We also found that the transformation of styrene oxide to chlorohydrin or chloroaldehyde was 
carried out only in the presence of anhydrous ZnCl2. In the case of hydrated one (ZnCl2·2H2O), the 
reaction did not any take place even under reflux conditions (entry 8). 
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Table 1. Optimization experiments for the reaction of styrene oxide with anhydrous ZnCl2a 

Entry Molar ratio        Condition Time 
(min) 

β-Chloro        
hydrin (%) 

α-Chloro 
aldehyde(%) 

Epoxide 
(%)b 

1 Epoxide/ZnCl2 (1:1) CH3CN/r.t. 35 100 0 0 
2 Epoxide/ZnCl2 (1:0.5) CH3CN/r.t. 60 100 0 0 
3 Epoxide/ZnCl2 (1:2) CH3CN/r.t. 25 100 0 0 
4 Epoxide/ZnCl2 (1:1) CH3CN/reflux 10 0 100 0 
5 Epoxide/ZnCl2 (1:1) EtOAc/r.t. 40 100 0 0 
6 Epoxide/ZnCl2 (1:1) n-Hexane/r.t. 40 40 0 60 
7 Epoxide/ZnCl2 (1:1) Solvent-free r.t. grinding 5 70 30 0 
8 Epoxide/ZnCl2·2H2O (1:1) CH3CN/reflux 60 0 0 100 

aAll reactions were carried out with 1 mmol of styrene oxide. bYields of recovered styrene oxide.  

 

       The suitability and scope of this synthetic method was further examined by the reaction of various 
epoxides bearing electron donating and withdrawing groups with anhydrous ZnCl2 at the optimized 
reaction conditions. All epoxides were easily and efficiently converted to the corresponding β-
chlorohydrins in excellent yields and regioselectivity. The reactions were completed within 10-50 min 
without formation of any side-products (Table 2). As seen, the nucleophilic ring opening of epoxides 
with anhydrous ZnCl2 took place easily at room temperature except phenyl and methacrylate glycidyl 
ethers and 1,2-epoxyoctane that their reactions were completed under reflux conditions (Table 2, 
entries 2, 7 and 8).  
 
Table 2. Conversion of epoxides to β-chlorohydrins with anhydrous ZnCl2 in CH3CNa 

Entry Epoxide β-Chlorohydrin    Time (min) Yield (%)b   Reference 

1 
O

Ph

 

Ph

Cl
OH

 
35 95 47 

2c 
O

PhO

 
PhO

OH
Cl

 
15 97 47 

3 
O

O

 

O
OH

Cl

 

30 92 22 

4 
O

O

 
O

OH
Cl

 
50 94 24 

5 O
O  

O
OH

Cl

 
25 95 22 

6 Cl
O  

Cl
OH

Cl

 
25 80 47 

7c O

O

O  

O

O

OH
Cl

 

10 97 24 

8c O  OH
Cl

 
15 94 47 

9 O

 Cl

OH

 
30 88 47 

aAll reactions were carried out with the molar ratio of epoxide:ZnCl2 (1:1) in CH3CN (2 mL) at room temperature. 
bYields refer to isolated pure products. cThe reactions were carried out under reflux conditions.  
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       Although the exact mechanism of this synthetic protocol is not clear, however, we think that the 
following mechanistic pathways maybe play a role in the formation of products (Scheme 2). 
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            Obviously, the regioselectivity of the ring opening of epoxides is dependent on the mechanism 
of the reaction and particularly on steric and electronic factors. As shown in Table 2, for epoxides 
carrying alkyl groups, it is the steric factor which predominates and the nucleophilic attack of chloride 
anion is strongly favored on the primary carbon atom of epoxides (SN2 type mechanism). In contrary, 
for epoxides carrying aryl groups, the electronic factor predominates and the nucleophilic attack of 
chloride anion is strongly favored on the more stabilized “carbocation” with participation of the phenyl 
group (SN1 type mechanism). 
 
3. Conclusions 
         
       In summary, we have shown that anhydrous ZnCl2 is a highly efficient reagent for conversion of 
various epoxides to the corresponding β-chlorohydrins in high yields and regioselectivity. The reactions 
were carried out within 10-50 min in CH3CN at room temperature or under reflux conditions. This 
transformation offers several advantages in terms of mild reaction conditions, perfect regioselectivity, 
short reaction times, clean reaction profile, and use of inexpensive ZnCl2 that make this protocol a 
practical useful addition to the present methodologies. 
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Experimental 
 
      All reagents and substrates were purchased from commercial sources with the best quality and they 
were used without further purification. FT-IR, 1H and 13C NMR spectra were recorded on Thermo 
Nicolet Nexus 670 FT-IR and 300 MHz Bruker Avance spectrometers, respectively. The products were 
characterized by their spectra data and comparison with the reported data in literature. All yields refer 
to isolated pure products. TLC was applied for the purity determination of substrates, products and 
reaction monitoring over silica gel 60 F254 aluminum sheet. 
 
Preparation of Anhydrous ZnCl2 
  
       In a Pyrex test tube equipped with a clamp, ZnCl2·2H2O (0.20 g) was placed and then heated on 
an alcohol lamp for 5 min. During the process, water of crystalline lattice of hydrated zinc chloride was 
evaporated to afford anhydrous ZnCl2 (0.15 g).  
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Conversion of Epoxides to β-Chlorohydrins by Freshly Prepared Anhydrous ZnCl2: A General 
Procedure 
          
        In a round-bottomed flask (10 mL) equipped with a magnetic stirrer and condenser, a solution of 
epoxide (1 mmol) in CH3CN (2 mL) was prepared. Anhydrous ZnCl2 (0.136 g, 1 mmol) was then added 
and depending to the kind of epoxide, the mixture was stirred magnetically at room temperature or 
under reflux conditions for the specified time in Table 2. Progress of the reaction was monitored by 
TLC (CCl4:Et2O / 5:2), and the epoxides carrying aliphatic groups were visualized by use of iodine 
vapor. CH3CN was evaporated and ethyl acetate (5 mL) was then added followed by stirring for 5 min. 
The mixture was filtered and the organic layer was evaporated to give the crude chlorohydrin. Further 
purification by a short column chromatography over silica gel (CCl4/Et2O) affords the product in 80–
97% yield. The structure of the products was confirmed by FT-IR, 1HNMR, 13CNMR spectra, and 
comparison with authentic samples prepared by other reported methods. 
 
Spectral data for β-chlorohydrins (Table 2, Entries 1-9) are as the followings: 
2-Chloro-2-phenylethanol (Entry 1): Pale yellow liquid. 1H NMR (CDCl3, 300 MHz) δ 7.40-7.27 
(m, 5H), 4.99 (t, J = 6 Hz, 1H), 3.93 (d, J = 7.5 Hz, 2H), 2.58 (bs, 1H); 13C NMR (CDCl3, 75 MHz) δ 
138.20, 128.90, 128.89, 127.44, 67.91, 64.89; FT-IR (νmax/cm-1, neat) 3428, 3062, 3032, 2922, 2856, 
1493, 1453, 1068, 757, 701. 
1-Chloro-3-phenoxy-2-propanol (Entry 2): Pale yellow liquid. 1H NMR (CDCl3, 300 MHz) δ 7.33-
7.28 (m, 2H), 7.02-6.91 (m, 3H), 4.22 (m, 1H), 4.10 (m, 1H), 3.82-3.70 (m, 2H), 2.71 (bs, 1H); 13C 
NMR (CDCl3, 75 MHz) δ 158.17, 129.61, 121.45, 114.54, 69.88, 68.39, 45.96; FT-IR (νmax/cm-1, neat) 
3415, 3064, 3039, 2926, 2879, 1648, 1595, 1495, 1461, 1295, 1242, 1173, 1109, 1080, 1044, 755, 692, 
510. 
1-Chloro-3-isopropoxy-2-propanol (Entry 3): Pale yellow liquid. 1H NMR (CDCl3, 300 MHz) δ 
3.97-3.91 (m, 1H), 3.64-3.59 (m, 3H), 3.55 (d, J = 6.3 Hz, 2H), 2.35 (bs, 1H), 1.18 (d, J = 6 Hz, 6H); 
13C NMR (CDCl3, 75 MHz) δ 72.38, 70.38, 68.49, 45.93, 22.01, 21.97; FT-IR (νmax/cm-1, neat) 3448, 
2925, 2857, 1463, 1377, 1251, 1129, 933, 847, 751. 
1-(Allyloxy)-3-chloro-2-propanol (Entry 4): Pale yellow liquid. 1H NMR (CDCl3, 300 MHz) δ 5.98-
5.84 (m, 1H), 5.32-5.19 (m, 2H), 4.08 (d, J = 5.1 Hz, 2H), 3.76-3.38 (m, 5H), 2.60 (bs, 1H); 13C NMR 
(CDCl3, 75 MHz) δ 134.17, 117.53, 72.37, 70.64, 70.26, 46.00; FT-IR (νmax/cm-1, neat) 3429, 2920, 
2855, 1426, 1352, 1262, 1108, 997, 931, 749. 
1-Butoxy-3-chloro-2-propanol (Entry 5): Pale yellow liquid. 1H NMR (CDCl3, 300 MHz) δ 3.98-
3.95 (m, 1H), 3.67-3.46 (m, 6H), 2.60 (bs, 1H), 1.58-1.54 (m, 2H), 1.40-1.25 (m, 2H), 0.92 (t, J = 7.5 
Hz, 3H); 13C NMR (CDCl3, 75 MHz) δ, 71.42, 71.18, 70.26, 45.99, 31.59, 19.22, 13.84; FT-IR 
(νmax/cm-1, neat) 3435, 2958, 2930, 2869, 1462, 1378, 1256, 1120, 843, 750.  
1,3-Dichloro-2-propanol (Entry 6): Colourless to pale yellow liquid. 1H NMR (CDCl3, 300 MHz) δ 
4.08 (m, 1H), 3.71 (d, J = 5.1 Hz, 4H), 2.22 (bs, 1H); 13C NMR (CDCl3, 75 MHz) δ 70.83, 45.73; FT-
IR (νmax/cm-1, neat) 3450, 2928, 2854, 1463, 1377, 1242,731. 
3-Chloro-2-hydroxypropyl methacrylate (Entry 7): Pale yellow liquid. 1H NMR (CDCl3, 300 MHz) 
δ 6.16 (s, 1H), 5.64 (m, 1H), 4.31 (d, J = 5.1 Hz, 1H), 4.17-4.10 (m, 1H), 3.90 (d, J = 4.8 Hz, 1H), 3.78-
3.60 (m, 2H), 2.12 (bs, 1H), 1.97 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 167.42, 135.70, 126.48, 69.71, 
65.47, 46.05, 18.27; FT-IR (νmax/cm-1, neat) 3457, 2923, 2854, 1717, 1635, 1452, 1299, 1168, 1021, 
947, 816, 754, 653. 
1-Chloro-2-octanol (Entry 8): Colourless liquid. 1H NMR (CDCl3, 300 MHz) δ 3.81-3.78 (m, 1H), 
3.68-3.62 (m, 2H), 2.20 (bs, 1H), 1.74 (m, 1H), 1.53 (m, 1H), 1.43-1.26 (m, 8H), 0.88 (t, J = 6.3 Hz, 
3H); 13C NMR (CDCl3, 75 MHz) δ 71.47, 50.55, 34.27, 31.59, 29.33, 25.46, 22.66, 14.07; FT-IR 
(νmax/cm-1, neat) 3434, 2928, 1463,1637, 1078, 730. 
2-Chlorocyclohexanol (Entry 9): Colourless to pale yellow liquid. 1H NMR (CDCl3, 300 MHz) δ 
3.69-3.48 (m, 1H), 3.54-3.48 (m, 1H), 2.88 (bs, 1H), 2.25-2.10 (m, 2H), 1.75-1.59 (m, 2H), 1.42-1.26 
(m, 4H); 13C NMR (CDCl3, 75 MHz) δ 75.34, 67.50, 35.13, 33.09, 25.64, 23.95; FT-IR (νmax/cm-1, 
neat) 3445, 2922, 2853, 1540, 1461, 1396, 1244, 1088. 
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