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A B S T R A C T

Background: A tool that can predict the estimated glomerular filtration rate (eGFR) in routine daily care can help
clinicians to make better decisions for kidney transplant patients and to improve transplantation outcome. In
this paper, we proposed a hybrid prediction model for predicting a future value for eGFR during long-term care
processes.
Methods: Longitudinal, historical data of 942 transplant patients who received a kidney between 2001 and 2016
at Urmia kidney transplant center was used to develop a hybrid model. The model was based on three primary
models: multi-layer perceptron (MLP), linear regression (LR), and a model that predicted a smoothed value of
eGFR. The hybrid model used at-hand, longitudinal data of physical examinations and laboratory test values
available at each visit. Two different datasets, a generalized dataset (GData) and a personalized dataset (PData),
were created. Then, in both datasets, two data subsets of development and validation were created. For predic-
tion, all records related to the fourth to tenth previous visits of patients in time order from the target date, i.e.,
window size (WS)=4–10, were used. The performance of the models was evaluated using Mean Square Error
(MSE) and Mean Absolute Error (MAE). The differences between the models were evaluated with the F-test and
the Akaike Information Criterion (AIC).
Results: The datasets contained 35,066 records, totally. The GData contained 26,210 and 8856 records and the
PData had 24,079 and 9103 records in the development and validation datasets, respectively. In the hybrid
model, the MSE and MAE were 153 and 8.9 in the GData, and 113 and 7.5 in the PData, respectively. The model
performance improved using a wider WS of historical records (from 4 to 10). When the WS of ten was used
the MSE and MAE declined to 141 and 8.5 in the GData and to 91 and 6.9 in the PData, respectively. In both
datasets, the F-test showed that the hybrid model was significantly different from other models. The AIC showed
that the hybrid model had a better performance than that of others.
Conclusions: The hybrid model can predict a reliable future value for eGFR. Our results showed that longitudinal
covariates help the models to produce better results. Smoothing eGFR values and using a personalized dataset to
develop the models also improved the models’ performances. They can be considered as a step forward towards
personalized medicine.

1. Introduction

Patients who received a kidney transplant require long-term fol-
low-ups based on the function of their transplanted kidney (TK). How-
ever, there are few tools that can help clinicians predict the function
of TKs [1,2]. Glomerular filtration rate (GFR) is an optimal index to
measure kidney function/failure2. It is the volume of fluid that hu-
man kidneys can filter per unit time [3]. Predicting functional sta-
tus of a TK in future time via predicting future values of GFR al

lows clinicians to be aware of their patients’ future health condition,
provide better clinical support if indicated, and avoid consequences of
graft failure by making early and best possible decisions [4].

Different prediction models have been proposed for predicting the
function of TKs following transplantation [2,5,6–12], and also for pre-
dicting the progress of kidney failure in patients with chronic kidney
disease (CKD) [13–16]. Those models are based on different methodolo-
gies including cox proportional hazard ratio [2,6,7,9–11,13–17], analy-
sis of covariance (ANOVA) [5], linear regression [7,8,18–20], artificial
neural networks (ANN)
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[11,12,19–21], support vector machine (SVM) [19,20], random forest
[20], logistic regression [11,12], and nomogram3 [7]. They are applied
to gauge a current estimated GFR (eGFR), or to predict future values of
eGFR [5,7,20], survival/failure of TKs [3,6–12,15,16], or the progress
of renal failure in CKD [13–14].

In the context of longitudinal care, it is often desired to incorpo-
rate patients’ recent clinical histories in predictive models for predict-
ing risk or a specific critical value. These include the rate of change and
volatility of biomarkers, medication history, hospitalization episodes,
and quality-of-life improvements [22]. Most of the currently proposed
prediction models have used static models for risk prediction and only a
few of them used some types of dynamic ones [8,14,15,16,21]. Dynamic
models use time-varying, longitudinal data with varying distributions
within the at-risk population [15]. Studies have shown that time-depen-
dent covariates contain valuable information and their inclusion can im-
prove the performance of prediction models [14–16,21,23]. Greene et
al. have noted that moving toward dynamic prediction by including lon-
gitudinal data in the prediction models can make the models more effi-
cient [23]. Tangri et al. [13] and de Bruijne et al. [16] accurately under-
lined the improvements in the prediction models in their studies. Stud-
ies have also shown that hybrid or ensemble models can work better
and predict more precisely, especially in ambiguous conditions or when
there is a large amount of data [19,24,25].

Many of the proposed prediction models could not be used in
long-term daily care processes for transplant patients [22], mainly be-
cause they used only baseline variables (e.g. discharge data)
[5,6–10,12,16,20] or variables at a fixed period of time (e.g. the 7th
day, the 6th month, or the first year after transplantation) [5,6–10,16]
in order to predict the risk or a target value for fixed future inter-
vals (e.g. 6months, 1year, or 5years after transplantation) [5,6,7,9,12].
Therefore, these models cannot be used in long-term care processes
when a prediction has to be done for a patient who is, for example, in
his/her 3rd year of transplantation or later. Moreover, to use the results
of predictive models in clinical practice, it is required not only to classify
a patient into a stage of the kidney function/failure but also to calculate
the strength of association with that stage [18]. This study was designed
to address the aforementioned issues. Our objective was to propose and
evaluate a hybrid, dynamic model to predict the value of eGFR for KT
patients’ upcoming visits using their longitudinally measured values of
time-dependent covariates. Furthermore, in a step toward personalized
medicine, we also evaluated the effect of using a so-called “personalized
dataset” on the performance of our proposed model.

2. Data preparation

2.1. Study population

The datasets used for developing our prediction models included
historical values of the time-dependent covariates of 942 adult KT pa-
tients (age>18years) in the kidney transplant center of Urmia Uni-
versity of Medical Sciences (UMSU), Urmia, Iran. KT patients rou-
tinely refer to an outpatient clinic after transplantation for their follow
up care. Physical examinations, physicians’ clinical notes and labora-
tory test results (biomarkers) of each clinic visit were mainly recorded
in paper-based medical records. The longitudinal data of 942 adult
patients who received their transplant between 2001 and 07-24 and
2016-03-06 and received their follow up care at our center between
2001 and 08-22 and 2017-04-17 (∼16years) was collected. After dig-
itizing the data, the eGFR of each patient for each recorded visit was
calculated using the Cockcroft-Gault formula, as one of the reliable
eGFR estimation methods in transplantation [27]. Transplantation age
and patient age at each visit time were also calculated. As suggested
by Greene et al., for predictive models, the base

2 According to the national kidney foundation (NKF), the normal GFR in young adults is
approximately 120 ml/min/1.73 m2. A decrease in GFR is an excellent index of decreasing
kidney function and precedes the onset of kidney failure. There are 5 stages for kidney
failure: Stage 1 (GFR ≥ 90), stage 2 (GFR between 60 and 89), stage3a (GFR between 45
and 59), stage3b (GFR between 30 and 45), stage 4 (GFR between 15 and 29), and stage
5 (GFR 〈15) [3].

3 A method for fast graphical calculation of complicated formulas to a practical
precision.

line time point should normally be designated as time 0, which is the
starting point for data collection [23]. In our study, the date of hospital
discharge was considered as the time 0. The institutional review board
of UMSU reviewed and approved the study. We used anonymized data
records for this study.

2.2. Datasets

Two different datasets, a generalized dataset (GData) and a person-
alized dataset (PData), were created before preparing and validating the
cohorts. This allowed us to check the effect of model personalization on
its performance.

2.2.1. Generalized dataset (GData)
The model would learn from the relationships among all members

of the general population of KT patients and then use it to predict the
future eGFRs value of patients for their upcoming visits. Within this
dataset, we randomly selected 75% of patients and used their histori-
cal values of time-dependent covariates as the development dataset. All
records of the remaining 25% of patients were used as an external un-
seen validation (test) dataset.

2.2.2. Personalized dataset (PData)
Taking into account the notion of personalized medicine, and similar

to what clinicians do in real practice, a patient’s history of biomarkers
and her/his current status should be considered before decision-making.
Therefore, an ideal prediction model should learn from each patient’s
history of TK functions and use it to predict a future function indica-
tor of that patient’s TK. To this end, the first 75% of records of each
patient’s historical data, in time order from the discharge day, were se-
lected non-randomly for developing the model and the remaining 25%
of that patient’s records were used for evaluating the model’s predictive
performance.

2.3. Data cleaning and correction

Only one percent missing data existed in our dataset, which were im-
puted using custom imputation. For this purpose, missing values of each
covariate were substituted with the moving average of its three previous
values in the time order. Also, in order to have a generalizable model,
outlier records were removed using 3-scaled median absolute deviation
(MAD) away from the median of the dataset [28]. In total, 108 and
25outlier records were removed from the development and validation
datasets in the GData, respectively; and 214 and 49 outlier records were
removed from the development and validation datasets in the PData, re-
spectively.

2.4. Moving average target (MAT)

Using MAT in our research came from the weighted exponential
moving average method, which was successfully used for time series
analysis [29]. The eGFR is a ‘noisy’ variable with a great deal of fluctu-
ation in a general population; thus, considering it as a solitary indicator
for declining TK function at the individual patient level may not be very
informative [30]. MAT presented a smoothed yet similar value to a real
target eGFR and was calculated by formulas (1) to (6).

(1)

(2)

(3)

(4)

2
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(5)

(6)

In formulas (1) to (3), the -n indicates the eGFR in the nth previous
record. The “eGFR (Current)” is the calculated eGFR at the time of a cur-
rent visit and “eGFR (Target)” is the target value of eGFR in an upcom-
ing visit. In construction of our hybrid model, the target eGFR was also
smoothed by formulas (1) to (6) in model (2) (please see Section 3.1).
The main reason for using “eGFR (Target)” two-times in the formula (5)
was that it helped the target MAT in the prediction model to have a
smoothed yet similar behavior to the real future eGFR.

2.5. Dynamic prediction and history window size

For predicting risk of clinical events in the context of long-term
care where patients’ clinical conditions and biomarkers may change
over time, a dynamic prediction that can adapt to a patient’s most re-
cent longitudinal data is required. Using patients’ longitudinal data to
construct dynamic prediction models has recently got much attention
[13–15,22,20]. For example, Li et al. used history windows of longitudi-
nal data as indicators of the amount of past history that, they believed,
was relevant to the prediction of the future renal failure [15]. In our
study, the history window size (WS) varied from four to ten and it was
considered as the size of a sliding window, containing values of prog-
nostic biomarkers from patients’ previous visits (i.e. WS=4 means us-
ing biomarker values of the current and three previous visits). The main
reason for starting WS from four was that the moving average target
(MAT) was calculated based on its four previous records. The WS=10
was set as the upper limit since the improvements in the model perfor-
mance beyond WS=10 were trivial. Moreover, using a WS greater than
10 led to an increase in the dimension of records and as a result, the
number of training and validation records decreased.

3. Statistical analysis: Prediction models

The prediction of the eGFR, as an optimal measure of patients’ TK
function, was considered as the main goal in the current study.

3.1. Construction of the prediction models

We developed and constructed a simple but efficient hybrid pre-
diction model based on the well-known prediction models of the MLP
[12,32,19] and the LR [18–20]. The noise robust, better discrimina-
tion power, different train

ing algorithms, parallel nature and the ability to detect nonlinear com-
plex relationships of the MLP have made it a popular tool in outcome
prediction [31,32]. On the other hand, the white-box structure of the
LR made it possible to interpret its results and showed the importance
of covariates [33]. In predicting clinical outcomes, the ANN-based pre-
diction models have had comparable results with the regression-based
prediction models such as the linear and logistic regression or the Cox
proportional hazard ratio models [12,19,33]. Fig. 1 shows the structure
of our proposed hybrid model that aims to use the prominent features
of both ANN and LR models to bring out more reliable results.

The hybrid model was constructed using three primary models.
Model (1) named as “direct prediction” (DP) model, tries to predict a
future value for eGFR via the MLP directly from all input covariates.
The primary model (2), named as “moving average prediction” (MAP)
model, uses all input covariates and predicts the MAT via the MLP. The
model (3), a “linear regression” (LR) model, tries to predict a future
value for eGFR via the LR. Model (4) is our hybrid (HB) model and pre-
dicts the eGFR (Target) via the MLP using the outputs of the three pri-
mary models mentioned above.

In the MLP based models, the number of nodes in the hidden layer
varied from one to ten and the best run was selected as the final model.
The DP, MAP, and LR used the historical (lag) values of 12 covariates
(see Section 3.2) with different WSs varying from four to ten of previ-
ous visits. The WS worked as lag-period; in other words, the WS of five
meant using all 12 covariates from the current visit plus all 12*4 co-
variates from the four previous visits comprising 60 covariates. There-
fore, in selecting WS of ten (recent 10 visits), the input set consisted of
all 120 covariates from current and nine previous visits of all 12 covari-
ates. Fig. 2 shows the internal structure of the models (1) and (2).

3.2. Candidate predictors

In this study, 12 time-dependent candidate variables were selected
considering data availability and published literatures [2–11]. The co-
variates were demographic variables of the recipients (current age
(C-Age) and transplantation age (T-Age) both at the time of each visit),
physical examinations (i.e., systolic (Sys-BP) and diastolic blood pres-
sures (Dias-BP) and patient weight at each visit), laboratory test val-
ues (i.e., fasting blood sugar (FBS), serum creatinine (Scr), blood urea
nitrogen (BUN), total number of white blood cells (WBC), hemoglobin
(Hgb)), and current eGFR. The patients are visited at our transplant
clinic based on a local protocol. They have more scheduled visits at the
early months after transplantation, and then the number of visits de-
creases to one visit every six-month period after two years. Patients also
have irregularities in their scheduled clinic visits. To recognize this vari-
ation in the visit schedules of patients, in addition to the aforementioned
covariates, we also defined a time-dependent variable, namely “time dif-
ference” (TD). It indicated the time differences between the current visit
date and the date of a future visit for which the target eGFR was being
predicted.

Fig. 1. The structure of our hybrid prediction model. WS=Window Size; DP=Direct Prediction Model; eGFR=estimated Glomerular Filtration Rate; MAT=Moving Average Target;
MAP=moving Average Prediction Model; LR=Linear Regression Model, Prd=Predicted value; HB=Hybrid Prediction Model.
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Fig. 2. The internal structure of the models (1), (2) and (4). FBS=Fasting Blood Sugar; Scr=Serum Creatinine; BUN=Blood Urea Nitrogen; C-eGFR=Current estimated Glomerular
Filtration Rate; T-Age=Transplantation Age (the age of transplanted kidney); TD=Time difference between current (data available) and target day; WS=Window Size.

3.3. Primary outcome

The primary goal of this study was using the longitudinal, time-de-
pendent covariates available at the current visit time to predict a recip-
ient’s eGFR at her/his upcoming visit.

3.4. Prediction model performance evaluation

Our models predicted a continuous variable. Therefore, two common
MLP evaluation measures i.e., the Mean Square Error (MSE) and the
Mean Absolute Error (MAE) were used to evaluate the performance of
our models [31,18,20]. Error was defined as the difference between a
predicted eGFR obtained from the models and the real eGFR at a next
referring time. The criterion, MSE, is the average of squares of predic-
tion errors and the MAE is the average of absolute errors. MSE and MAE
are calculated as:

where n is the number of observations, y'i is the output (next predicted
eGFR) of the prediction model for the ith record and yi is the real value
(the next real eGFR) for the ith record.

To evaluate the significance of the differences between the models,
we performed the F-test for variances [34] and the Akaike Information
Criterion (AIC) to estimate the relative quality of proposed models [35].
The AIC was calculated as:

where n is the number of samples, SSE is the Sum of Squared Errors and
p is the number of model parameters.

The AIC scores are reported as ΔAIC scores. The ΔAIC is the relative
difference between the best model (which has a ΔAIC of zero) and each
of the other models. The ΔAIC was calculated as:

where AICi is the score for the particular model i, and minAIC is the
score for the best model.

4. Results

4.1. Study participants

The historical data of lab-test values and physical examinations of
942 kidney recipients contained 35,066 records and were suitable for in-
clusion in our prediction models. In the GData, the mean duration of fol-
low-ups in the development and validation cohorts were 2136 (±1289)
and 2135 (±1210) days, respectively. Median number of visits per pa-
tient (visiting record history) was 35 (ranging 10–136), with an aver-
age of two months between follow-up visits. Average eGFR at the time
of transplantation discharge was 68.4ml/min/1.73m2. In average, there
were 37 records of laboratory test results, physical examinations, and
eGFRs for each patient. Detailed baseline characteristics of these two co-
horts in the GData are shown in Table 1.

Table 1
Characteristics of the development and validation cohorts in Generalized Data (GData).

Characteristics Development Validation p-value
Number of patients 706 236 NA
Number of records * 26,210 8856 NA
Follow-up duration in day,

mean (±SD)
2136(±1289) 2135(±1210) NA

Donor-age in year, mean (±SD) 28(±6) 28(±7) <0.001
Donor-gender, Male (%) 667(94%) 227(96%) 0.98
Recipient-gender, Male (%) 401(57%) 154(65%) <0.001
Time-dependent covariates (Recipient)
Laboratory values, mean (±SD)
FBS, mg/dl 95.71(±38.5) 96.4(±43.7) 0.27
Scr, mg/dl 1.3(±0.5) 1.31(±0.44) <0.001
BUN, mg/dl 37.5(±20.3) 37.3(±18.8) <0.001
WBC, count/per mcL 8.0 (±2.7) 7.7(±2.9) 0.014
Hgb, g/dl 13.1 (±2.7) 13.2(±2.2) <0.001
Physical Examination covariates (Recipient) mean (±SD)
Weight, kg 69.1(±13.8) 70.5(±13.9) <0.001
Systolic BP, mm Hg 127.6(±184.9) 126.6(±16.6) 0.72
Diastolic BP, mm Hg 80.2(±9.1) 80.3(±8.9) <0.001
Current eGFR, ml/min/1.73 m2 70.3(±23.6) 72.8(±24.1) <0.001
The age of transplanted kidney

(in day)
1194(±1112) 1141(±1058) <0.001

Current age (in year) 42.9(±13.9) 42.7(±12.5) <0.001
Time difference #, (in day) 59.2(±62.3) 58.1(±61.7) <0.001
Outcome, mean (±SD)
Predicted eGFR, ml/min/

1.73m2
70.2(±23.4) 72.7(±24.2) NA

* Total number of visit records of all patients following transplant surgery in outpatient
clinic.

# The time elapsed between the current visiting day and a future predicted eGFR’s
visiting day.

4
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Patients in the validation cohort of the PData were the same as pa-
tients included in the development cohort of this dataset. Mean age
of recipients at the time of transplantation was 40years and about
less than one percent of them

Table 2
Characteristics of development and validation cohorts in Personalized Data (PData).

Characteristics Development Validation p-value
Number of patients 942 The same NA
Number of records * 24,079 9103 NA
Follow-up duration in day,

mean (±SD)
1304(±881) 749(±528) NA

Donor-age in year, mean
(±SD)

28(±7) The same <0.001

Donor-gender, Male (%) 894(95%) The same 0.98
Recipient-gender, Male (%) 555(59%) The same <0.001
Time-dependent covariates (Recipient)
Laboratory values, mean (±SD)
FBS, mg/dl 93.7(±39.7) 99.4(±40) 0.27
Scr, mg/dl 1.27(±0.4) 1.47(±0.6) <0.001
BUN, mg/dl 35.9(±18.4) 41.3(±23.1) <0.001
WBC, count/per mcL 7.7(±2.6) 7.5(±2.8) 0.015
Hgb, g/dl 13.2(±2.3) 12.9(±1.9) <0.001
Physical Examination covariates (Recipient) mean (±SD)
Weight, kg 68.4(±13.7) 71.9(±13.8) <0.001
Systolic BP, mm Hg 128.2(±190.1) 125.5(±19.2) 0.72
Diastolic BP, mm Hg 80.4(±9.5) 79.6(±7.9) <0.001
Current eGFR, ml/min/

1.73m2
72.7(±23.1) 66.1(±23.8) <0.001

The age of transplanted
kidney, in day

712.1(±731.4) 2188.2(±1134.7) <0.001

Current age, in year 41.6(±13.4) 45.6(±13.5) <0.001
Time difference #, in day 48.2(±46.0) 85.5(±83.7) <0.001
Outcome, mean (±SD)
Predicted eGFR, ml/min/

1.73m2
72.9(±23.2) 65.2(±23.9) NA

* Total number of visit records of all patients following transplant surgery in outpatient
clinic.

# The time elapsed between the current visiting day and a future predicted eGFR’s
visiting day.

Table3
Comparing Moving Average Target (MAT) Characteristics with eGFR in the two datasets.

Development Validation

GData eGFR
(Y)

MAT | Y –
MAT |*

eGFR
(Y)

MAT | Y –
MAT |*

Mean 70.2 71.2 4.5 72.7 68.2 4.6
SD 23.4 21.1 4.4 24.2 22.1 4.7

PData Mean 72.9 72.9 4.7 65.2 63.8 3.8
SD 23.2 20.7 4.6 23.9 22.1 3.8

* Indicates absolute difference value.

were older than 65years. Male gender was dominant in both recipient
and donor populations (59% and 95%, respectively). Detailed baseline
characteristics of these two cohorts in the PData are shown in Table 2.

By predicting the MAT via the MAP model, the model tried to predict
a smoothed target eGFR, which had similar statistical behavior to that
of the real eGFR as shown in Table 3. The average absolute difference
between the MAT and the real eGFR was 4.5 (±4.4) and 4.6 (±4.7) in
the development and validation cohorts of the GData, respectively. This
difference was 4.7 (±4.6) and 3.8 (±3.8) in the development and val-
idation cohorts of the PData, respectively. In spite of the fact that the
MAT is a smoothed eGFR, it cannot be considered as an exact indicator
of the real eGFR.

Because eGFR (Target) was included in the MAT formula two-times,
the MAT had a smoothed yet similar behavior to the real eGFR (Target).
Fig. 3 shows the difference between the real eGFR and the MAT using a
random patient from the sample population, as an example.

4.2. Prediction model performance in the GData

Prediction performances for our proposed models in the GData are
shown in Table 4 and Fig. 4. The results showed that the HB-model per-
formed well in both training and validation datasets. By increasing the
WS, the performance of the models got better and error measures de-
clined. The MSE and MAE for the HB-model in the validation data were
153 and 8.9 when the WS was four and they declined to 141 and 8.5
when the WS was ten. As shown in Fig. 4, the MAP model outperformed
other models. However, the main distinction was that this model pre-
dicted a MAT and not a real eGFR.

4.3. Prediction model performance in the PData

Prediction performances for the proposed models in the personalized
dataset are shown in Table 5 and Fig. 5. The results showed that the
HB-Model performed well in both training and validation datasets by
increasing the WS to ten. The MSE and MAE in the validation dataset
were 113 and 7.5 when the WS was four and they became 91 and 6.9
when the WS was ten. Prediction results in the PData showed that the
performance of the MAP model was better than those of other models.

4.4. Differences between the models

The proposed models were compared with respect to the MSE and
MAE. All covariates of the prediction models had normal distribution.
As it can be seen in Table 6, the MAP and LR models significantly
differed from the HB model (F-Score>F Critical and p-value<0.05)
in the GData. However, only

Fig. 3. Comparing real target eGFR and MAT in an example patient.
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Table 4
Prediction performance of proposed models in Generalized Data (GData).

Window Size

Models 4 5 6 7 8 9 10

Development (Train) DP (1) MAE 9 8.9 8.9 8.8 8.8 8.8 8.7
MAP (2) 6.7 6.7 6.7 6.6 6.6 6.5 6.5
LR (3) 9.2 9.1 8.7 8.7 8.7 8.7 8.7
HB (4) 8.9 8.8 8.8 8.8 8.7 8.7 8.6
DP (1) MSE 157 155 154 153 151 151 147
MAP (2) 88 87 86 85 85 84 83
LR (3) 170 168 148 148 148 148 148
HB (4) 156 152 152 150 149 149 145

Validation (Test) DP (1) MAE 8.9 8.9 8.9 8.8 8.8 8.7 8.6
MAP (2) 6.7 6.6 6.7 6.6 6.6 6.6 6.5
LR (3) 9.2 9.2 9 9 9 9 9
HB (4) 8.9 8.8 8.8 8.8 8.7 8.6 8.5
DP (1) MSE 154 153 152 148 148 150 142
MAP (2) 86 85 86 83 85 83 81
LR (3) 186 165 158 158 158 158 158
HB (4) 153 152 151 146 145 145 141

MAE=Mean Absolute Error, MSE=Mean Square Error.

Fig. 4. Validation prediction performance (MSE) in GData. MSE=Mean Square Error, Please note that although MAP model performed better than other models, as noted in the text,
it predicts MAT value of eGFR and not real value of eGFR.

the LR model differed significantly from the HB model in the PData.
There were significant differences between the DP and the HB models
in both the GData and the PData. In both datasets, the relative quality
of the DP model with respect to the optimal model (the HB model) was
supported mostly by the results of the AIC. This followed by the relative
quality of the MAP and the LR models.

5. Discussion

In this study, we proposed three models to predict a future value for
eGFR, as the main indicator of TK function evaluation metric. We eval-
uated these model performances as shown in Fig. 4 and Table 4. All the
DP, MAP, and LR models had more or less similar performances in pre-
diction of eGFR in different WSs. Thus, each model can individually be
used for predicting eGFR. However, as a clinical tool, the model requires
to be as reliable and robust as possible. To improve the performance
of these models, we used the outputs of those three primary models as
the inputs for the HB model. The results of HB model’s performance
confirmed that its performance was better than that of the primary
models. In the WS of ten, the HB model predicted a future value for

eGFR with the MSE and MAE of 141 and 8.5 for the GData and 91
and 6.9 for the PData, respectively. This finding is in line with pre-
viously published articles concerning the efficiency of hybrid models
[19,24,25]. The MLP as a prediction tool in the MAP and the HB mod-
els offered better performance than the LR (Table 4 and 5). Among
the three primary models, the MAP had the best performance. How-
ever, this model predicts a smoothed value of eGFR instead of its real
value. Hence, it cannot be considered as a good clinical tool. Figs. 4
and 5 show that including the MAP in the HB model improved its
performance. Therefore, the smoothed value of the MAT could pro-
duce a better prediction for TK function. A population-based study
showed that GFR is a noisy variable with a very fluctuating trend
in the general population [30]. Therefore, smoothing eGFR based on
each patient’s own records with the MAT can help predict the trend
of TK’s function with less noise and fluctuation. This can be consid-
ered as a step forward towards personalized medicine [30]. Also, the
AIC showed that the HB model had the best performance, thus, its se-
lection helped minimize information loss. In spite of the better per-
formance of the HB model, other models had more or less similar
behavior. Therefore, to check the importance of the differences be-
tween our results, the F-test was done to check the equality of the
variances. The results showed that there were significant dif
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Table 5
Prediction performance of proposed models in Personalized Data (PData).

Window Size

Models 4 5 6 7 8 9 10

Development (Train) DP (1) MAE 9.2 9.2 9.3 9.2 9.2 9.1 9.1
MAP (2) 6.9 6.9 6.9 6.9 6.9 6.8 6.8
LR (3) 9.8 9.4 9.3 9.2 9.2 9.2 9.1
HB (4) 9.2 9.2 9.2 9.1 9.1 9 9
DP (1) MSE 162 163 163 161 160 156 157
MAP (2) 91 91 92 90 90 89 88
LR (3) 165 164 164 162 161 159 158
HB (4) 160 161 161 160 158 154 153

Validation (Test) DP (1) MAE 7.6 7.5 7.4 7.3 7.1 7.2 6.9
MAP (2) 5.8 5.6 5.5 5.5 5.4 5.3 5.3
LR (3) 7.9 7.6 7.5 7.3 7.2 7.2 7.1
HB (4) 7.5 7.5 7.3 7.1 7 7 6.9
DP (1) MSE 115 110 107 103 97 97 92
MAP (2) 65 61 60 58 55 54 52
LR (3) 117 112 108 105 99 98 94
HB (4) 113 109 105 101 96 95 91

MAE=Mean Absolute Error; MSE=Mean Square Error

Fig. 5. Validation prediction performance (MSE) in PData. MSE=Mean Squre Error. Please note MAP model, as noted in the text, predicts MAT value of eGFR and not real value of
eGFR.

Table 6
The significant of the Differences between the models on GData and PData.

Comparison With HB Model

Comparing quality of
the models to HB
model

Models F-Score P-Value
F
Critical AIC# ΔAIC

GData DP 1.013 0.290 1.038 20446.38 69.5
MAP 1.040 0.044 1.038 20481.24 104.4
LR 1.076 0.001 1.038 20598.78 221.9
HB 20376.88 0.0

PData DP 1.01 0.46 1.07 5960.65 4.9
MAP 1.02 0.34 1.07 5975.97 20.2
LR 1.06 0.09 1.07 6004.24 48.5
HB 5955.75 0.0

Abbreviation: F-Score=calculated by F-Test. AIC=Akaike Information Criterion.
# The AIC was calculated based on sum of squared errors between model outputs and

real target eGFRs.

ferences between the HB and the MAP and also significant differences
existed between the HB and the LR models. Also, the results of the
F-test showed that there was no significant difference between the
HB and the DP models. The

main reason was the fact that both models used the MLP as a core pre-
diction tool and there were small differences concerning the MSE and
MAE between them in comparison to other models.

One important observation of our study was that the models worked
better when they were built on the PData (MSE of 113 in the PData
vs., MSE of 153 in the GData). In addition, increasing the window size
improved the performance of the models. Prediction results within the
validation cohort (Table 5) showed that the MSE declined around 20%
(113 in WS=4 vs. 91 in WS=10) in the PData. This finding showed
the importance of using patients’ own data in building prediction mod-
els and indicated another step forward towards personalized medicine
[4]. When compared with similar research, the results of our work were
better than those of Pape et al. (MSE=153 when WS=1 vs. 199 in
model 3 of their work) [18]. However, it should be noted that our study
was performed using a completely different dataset.

Predicting the future trajectory of TK function is an important yet
challenging issue for long-term follow-ups of transplant patients. It be-
comes even more important when patients’ visits are scheduled for
longer intervals and they get back when it is probably too late. Thus,
in order to use in routine daily care processes, we needed to develop
a tool that can use data that is available at patients’ ordinary vis-
its. This would enable us to use the model in daily basis of long-term
care processes and make the best possible decisions for transplant
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patients. Different prediction models have been proposed to help trans-
plant care from different aspects. To the best of our knowledge, how-
ever, this is the first study that aims to help transplant care by predict-
ing an eGFR value for the upcoming visit of a patient based on historical
values of multiple longitudinal, at-hand data.

The eGFR prediction model proposed by Lasserre et al. used
donor-recipient characteristics available at the time of transplantation
for predicting recipient eGFR one year after transplantation [20]. They
had 707 patients and applied four different regressors including ANNs,
LR, Random Forest, and SVM. Although they started with 56 features,
they concluded that the most valuable variables for prediction were age
and creatinine levels of donors as well as gender and weight of recipi-
ents. In another study, Tiong et al. used linear or cox regression to build
nomograms that predict one-year eGFR and five-year graft survival
based on the data of pre-transplant phase and 6months after transplan-
tation [7]. Their nomograms could successfully predict one-year eGFR
and five-year graft survival. Likewise, Salvadori et al. [5] used univari-
ate and multivariate methods to predict one-year eGFR and five-year
graft survival. Unlike our study, those three eGFR prediction studies
used a snapshot of patients’ data from pre- and/or post- transplantation
phases to perform their predictions. Thus, their tools cannot be used eas-
ily in long-term routine care processes, as we explained earlier. About
using time-varying covariates (or longitudinal data) in prediction, Har-
iharan et al. [10] showed that the efficiency of prediction improved
when one-year serum creatinine and the change of serum creatinine be-
tween 6months and one year after transplantation were considered in
predicting long-term renal graft survival. Foucher et al. [9] proposed
a composite kidney transplant failure score (KTFS), which used crea-
tinine and proteinuria at 3, 6, and 12months after transplantation to
predict graft failure in 8years. Shabir et al. [6] used laboratory results
(Scr, urea, albumin, cyclosporine trough level, hemoglobin, and eGFR)
at 12months and their change between 6 and 12-months post-transplan-
tation for predicting transplant failure, 5-year after transplantation. Ka-
siske et al. [2] used eGFR at 12-month post-transplantation for outcome
prediction. Tangri at al. proposed a model for predicting the progres-
sion of kidney failure in CKD patients using latest-available measures
of laboratory test results, which has gained much attention recently
[13]. All these works showed that applying time-varying longitudinal
data improved the performance of prediction models, and confirmed
our approach in using longitudinal data for prediction. The joint mod-
eling and landmark modeling are methods that used baseline covariate
and historical values of time-dependent covariates for biomarkers pre-
diction [15,21]. Their predictions strongly depend on survival model,
which suffers censoring problem and requires a great deal of computa-
tion effort to do prediction, when new record becomes available [15].
Moreover, those models could not be used in routine base [22]. Like-
wise, the structure and the parameters of the previously proposed pre-
diction models for predicting eGFR [7,5,18,20] and graft loss/failure/
survival [2,6,8–12,15,16,17] make it impossible to be used in routine
base. Those models differ from that of ours because they only allowed
a single longitudinal outcome to be predicted in solitary event times. In
practice, however, clinical evaluations are likely to record multiple re-
sults for a single test along the time (multiple longitudinal data) [22].
The results of our work showed that incorporation of multiple longitu-
dinal data improved the performance of the prediction model. In our
model, using the sliding window structure of the recent historical values
and using only at-hand available biomarkers at each visit time makes it
possible to integrate the model into daily care processes.

Furthermore, our proposed model works similarly to how clinicians
work in their daily care processes. Like a clinician, the model recognizes
the relationship between previous and current health indicators of a spe-
cific patient and predicts the future value of a health indicator (health
condition) for that patient. Clinicians can make a better decision when
necessary information related to their patients is available in their infor-
mation system or memory. This, however, practically becomes difficult
when patient information grows into a larger scale. In such conditions,
an appropriate prediction model embedded in electronic health records
(EHR) can help clinicians to manage their patients more easily and effi-
ciently.

This study has limitations. The main limitation of this study was
availability of data only for 942 out of more than 2700 patients at
the time of data collection. Also, it used data from a single center.
Using large amount of historical data of transplant patients from dif-
ferent centers could probably improve the generalizability and stabil-
ity of the model and support the model usage in daily care processes.
The proposed model uses only historical value of the time-dependent
covariates; however, including appropriate baseline variables at pre-
and post-transplantation times (e.g., donor/recipient age and gender,
Human Leucocyte Antigen Typing, cold ischemia time, and other co-
variates), genetic data, gene expression, drugs dosage and usage mech-
anisms, as well as medical interventions in long-term follow-up care
into a prediction model could probably provide better performance of
the model and support the move towards personalized medicine. Our
dataset was intrinsically ordered (time dependent) data. Performing
cross-validation on this type of data is considered problematic [35]. Al-
though we used the AIC to distinguish a better-performed prediction
model, inability to perform cross-validation may still be a limitation for
this study.

6. Conclusion

The proposed hybrid model had desirable results especially when
larger amount of historical data (i.e., WS=10) was used. Using at-hand,
historical data of available biomarkers and sliding windows structure,
which uses patients’ most recent data for prediction, makes our model
an appropriate tool to be used in long-term follow-up care processes.
This tool has the potential to be integrated into the existing EHRs to be
used routinely. We showed that including historical values of time-vary-
ing covariates promoted the prediction model to produce better results.
Smoothing eGFR based on each patient’s own records (i.e., MAT) as-
sisted predicting the trend of a TK function with less noise and fluctu-
ation. This can be considered as a step forward towards personalized
medicine
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