
Epilepsy & Behavior 96 (2019) 122–131

Contents lists available at ScienceDirect

Epilepsy & Behavior

j ourna l homepage: www.e lsev ie r .com/ locate /yebeh
Review
Prenatal stress and elevated seizure susceptibility: Molecular
inheritable changes
Ehsan Saboory a,⁎, Sedra Mohammadi b,⁎⁎, Sina Dindarian b, Hozan Mohammadi c

a Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
b Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
c Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
⁎ Corresponding author at: Department of Physiolog
University of Medical Sciences, Urmia 5756115111, Iran.
⁎⁎ Corresponding author.

E-mail addresses: saboory@umsu.ac.ir (E. Saboory), d.
(S. Mohammadi).

https://doi.org/10.1016/j.yebeh.2019.04.046
1525-5050/© 2019 Published by Elsevier Inc.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 5 February 2019
Revised 17 April 2019
Accepted 24 April 2019
Available online xxxx
Stressful episodes are common during early-life and may have a wide range of negative effects on both physical
and mental status of the offspring. In addition to various neurobehavioral complications induced by prenatal
stress (PS), seizure is a common complication with no fully explained cause. In this study, the association
between PS and seizure susceptibility was reviewed focusing on sex differences and various underlying
mechanisms. The role of drugs in the initiation of seizure and the effects of PS on the nervous system that
prone the brain for seizure, especially the hypothalamic–pituitary–adrenal (HPA) axis, are also discussed in detail
by reviewing the papers studying the effect of PS on glutamatergic, gamma-aminobutyric acid (GABA)ergic, and
adrenergic systems in the context of seizure and epilepsy. Finally, epigenetic changes in epilepsy are described,
and the underlyingmechanisms of this change are expanded. As the effects of PSmay be life-lasting, it is possible
to prevent future psychiatric and behavioral disorders including epilepsy by preventing avoidable PS risk factors.

© 2019 Published by Elsevier Inc.
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1. Prenatal stress (PS) and offspring neurodevelopment

Prenatal stress is defined as the exposure of a mother to distress
before giving birth [1]. Prenatal stress can affect the offspring in various
ways in the long term [2–5]. Studies on animals demonstrated that fe-
tuses exposed to PS may face preterm birth and low birth weight
[6–8]. During pregnancy, environmental elements and genetic changes
may affect fetus development, showing the importance of maternal
stress in the development of fetus [9]. Several studies have stated that
PS can also change the offspring's brain, bothmorphologically and func-
tionally. These alterations include a wide spectrum of disorders such as
schizophrenia, attention-deficit/hyperactivity disorder, autism, learning
disorders, anxiety, and behavioral disorders [10–15]. As mentioned
above, animal studies suggest a relatively strong association between
PS and child outcome. In other words, stressed animals are likely to
have stressed offspring.

Studies show that PS affects child outcomealso in humans. In a study
conducted by Rice et al. [16], they evaluated the effects of PS on in-vitro
fertilization-born children related and unrelated to their mothers. They
noticed that the association between PS and antisocial behavior is
seen in both related and unrelated children mother–offspring pairs.
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However, in human studies, the association seems to be complicated
and multifactorial. That means that prenatal and postnatal stressors ac-
companying genetic characteristics affect the child outcome. A stressed
mother is more likely to be stressed also in her postnatal period which
makes her to be a stressed parent. Other covarying factors such as
smoking, alcohol consumption, and socioeconomic status may also
add to this stressed status. Also, due to common genetic susceptibility,
a depressed, anxious, or stressed mother is more probable to have a
child with same characteristics [17–19]. Conclusively, it is recom-
mended to evaluate the effect of parent stress on child outcome
considering prenatal, postnatal, and genetic status altogether.

On the other hand, neurodevelopmental effects of stress considering
its level have also been discussed in number of studieswith opposite re-
sults. Some studies suggested that low level of PS can help development
of neuronal structure. As an example, DiPietro et al. [20] investigated
that mild stress was correlated with better motor and cognitive devel-
opment. However, O'Connor et al. [17] discovered that linear dose re-
sponse effect might be related to behavioral outcomes; that means
different dose response effect of PS can cause different results. For in-
stance, mild dose of stress increases both physical maturation and anx-
iety. These changes are better to be called evolutionary adaptation,
rather than “good” or “bad” [21]. Other studies have demonstrated dif-
ferent results evaluating the effects of maternal stress on the offspring
brain and motor development. Polanska et al. [22] have shown that PS
only affects the cognitive development, mental operations, and insight
of the offspring while it does not have any significant impacts on
visual-motor coordination, reflexive behaviors, and primary circular
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reactions. Other studies have also confirmed these findings [23–25]. It is
also important to consider postnatal environmental effects, since sensi-
tive mothering may protect the child from some of the prenatal envi-
ronment effects [26] but some forms of insecure attachment can make
them worse [27].

2. Stress during prenatal stage and seizure in offspring

According to the studies, seizure induction can be potentiated by PS
in the offspring. Seizure is an abnormally high discharge of brain neu-
rons whose cause is not clearly explained yet [28]. A study reported
that exposure to PS increases the probability of seizure, especially
early in life [29]. As showed in Fig. 1, together with genetic and epige-
netic factors, early life stress increases the risk of the development of ep-
ilepsy [30]. Generally, prenatal factors may affect the probability of
seizure occurrence which encompasses every kind of seizure [31–37].

In case of exposure to stress, the central nervous system (CNS) of the
fetus can be influenced by stress hormones released by the pregnant
mother's endocrine system. These hormones mostly include glucocorti-
coids (GCs) and corticotrophin-releasing hormone (CRH) [38]. The
neurotransmitter systems of the body may be disturbed by exposure
to both endogenous and exogenous GCs [39,40]. It has been demon-
strated that excitable parts of the hippocampus are affected by the
abnormally high levels of GCs resulting from the activation of the hypo-
thalamic–pituitary–adrenal (HPA) axis in a recurrent manner [41,42].
With regard to the involvement of these regions of the hippocampus
in developing seizure, the mechanism of epilepsy due to PS can be
explained [43]. Studies have also reported the effect of early-life stresses
on seizure susceptibility. In a study, the effects of early-life inflamma-
tion on hyperthermia-induced seizures were investigated in infant
rats. The findings suggested that, as an early-life stress, neonatal
inflammation potentiates hyperthermia-induced seizures and also in-
creases seizure susceptibility at older ages. Decreased blood levels of
interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α)
may be the cause of inflammation-induced increased seizure intensity
in infants [44]. Thus, the literature generally supports the considerable
association between stress in early-life stages and seizure susceptibility
later in life.

3. Sex-specific stress effects on seizure

Stressors may affect men and women in completely different ways.
Stressful situations may cause men to show a “fight-or-flight” reaction,
while women are likely to demonstrate “tend-and-befriend” reactions
[45,46]. Some studies have shown that responses to stress are
endocrinologically different between males and females [47,48]. The
Fig. 1. Effects of stress on epileptogenesis. Exposure to stress affects neuronal structure and func
brain is vulnerable to stress. Together with genetic background and other environmental facto
(Adopted from van Campen et al. [30])
results of a study conducted by Sadaghiani et al. [36] stated a significant
difference between corticosterone levels of male and female rats after
gestational restraint stress. In the mentioned study, male offspring had
higher levels of corticosterone, greater intensity of seizure, and higher
mortality rate compared with female offspring. In addition, the study
of Finn et al. [49] suggested that the basal seizure risk differs in males
and females, as also revealed by other studies on the measurement of
seizure susceptibility [50,51]. Thus, prenatal stressors may affect males
and females in different ways. Further studies are required in this field
in order to discover the difference between males and females in
terms of the risk of seizure induced by PS.

4. Effects of corticosteroids in the central stress response and
seizure susceptibility

Stressful events and/or exposure to GCs, along with neurotransmit-
ters' alteration during early-life periods, cause changes in the neuronal
structure depending on the brain region [52,53]. During the perinatal
period, elevation of synaptic plasticity has a critical role in brain devel-
opment, thus explaining the sensitivity of the brain to external factors,
including stress [54,55]. Stressful experiences and GCs affect the struc-
ture and function of the brain through variousmechanisms such as den-
dritic retraction or expansion and increased or decreased synapse
density on different parts of the brain [56–58]. Glucocorticoids are se-
creted from the adrenal cortex in response to stress and easily cross
the blood–brain barrier to activate two intracellular receptors, glucocor-
ticoid receptors (GRs), and mineralocorticoid receptors (MRs), to
regulate gene expression and influence brain function [56,59]. The
ligand affinity and distribution of these receptors differ [59]; MR has a
tenfold higher affinity than GR. Thus, they are mostly occupied when
corticosterone levels are low [60]. This feature is involved in the transfer
of information and stability, self-regulatory abilities, and control of the
system's response to stress [52,61]. Consequently, the proper balance
of MR and GR activation is vital for homeostasis. The binding affinity
of MR for aldosterone, cortisol, and corticosterone is almost the same.
Glucocorticoids stimulate MR in most tissues at normal levels and GR
at stress levels [62].

For long, it was believed that the intracellular GR plays the key role
in the stress response by controlling negative feedback on the HPA
axis, recovering the brain from stress, and normalizing neuronal activity
[52,63]. However, recent studies indicated that, after stress, GRs also be-
come considerably activated in spite of their lower affinity. Thus, after
experiencing stress, both groups of GRs and MRs become occupied
[64]. Glucocorticoids attach to these membrane receptors and change
the excitability and activity of neurons through a nongenomic mecha-
nism [65], and that is why they seem to participate in an acute state of
tion, thus, influences epilepsy at several stages of life. Especially in early life, the developing
rs, early-life stress increases the risk of the development of epilepsy.



Fig. 2. Role of PS on the mother-placenta-fetus unit. Prenatal stress activates the maternal
HPA axis, which increases levels of circulating maternal CRH and cortisol. This, in turn,
increases the production and release of placental CRH into the bloodstream. In contrast to
hypothalamic CRH production, which is suppressed by stress-induced cortisol, placental
CRH is increased by GCs, so that PS leads to progressively higher fetal plasma cortisol and
CRH levels. This placental CRH reaches the fetal brain and could influence the fetal
hippocampus, presumably by activating CRH receptors. Prenatal stress also reduces the
expression and activity of 11β-HSD2, in the placenta, leaving the fetus less well-
protected. Downregulation of placental 11β-HSD2 activity increases glucocorticoid
exposure of the placenta and the fetus. Alterations of fetal HPA axis remain present in the
newborn. PS = prenatal stress; HPA = hypothalamic–pituitary–adrenal; CRH =
corticotropin-releasing hormone; 11β-HSD2=11β-hydroxysteroid dehydrogenase type 2.
(Adopted from Charil et al. [81])
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arousal and hypervigilance [59]. Both GR and MR are widely expressed
in the developing brain, mostly in hypothalamic CRH neurons and pitu-
itary gland. Expression of MR is predominantly limited to the limbic
area, with the highest expression levels found in the hippocampus
[52,60]. Corticosteroid receptors binding in the rat brain are shown to
be low during gestation but, after birth, a mechanism of induction or
repression of the transcription of more than 200 genes [66] provides
neuron remodeling and brainmaturation [67]. GRs andMRswere firstly
detected in hippocampal formation, indicating that steroids influence
the brain in more ways than through the hypothalamus. These
receptors are known to affect episodic memory and spatial and mood
equilibration [58,68]. In addition, studies indicate that MRmediates ex-
citatory effects of corticosteroids on seizure vulnerability. The circadian
rhythm in seizure vulnerability varies with the circadian rhythm of
blood corticosteroids levels and MR binding. The types of seizures af-
fected bymanipulations ofMR activity are thought to be of limbic origin,
signifying that limbic seizures may be attenuated by the use of specific
MR blockers [69].

Upon exposure to stress, GCs seem to cause dendritic retraction and
loss of communication branches [58,70]. Studies on rats confirm that
the expression of genes can cause variations after the end of stress
until 24 h later [71]. At the time of stress effects, stimulatory amino
acids can influence neuronal replacement in the adult brain which
was first recognized in the hippocampus [72]. Acute and chronic
stresses play a different role in different parts of the brain. For instance,
acute stress causes an increased spine density on basolateral neurons,
and chronic stress develops new branches of dendrites in the amygdala
[73], while chronic stress on themedial amygdala induces loss of spines
[74]. In the dentate gyrus, chronic stress can alter gene transcription in
response to an acute infusion of corticosteroids. Moreover, in the pre-
frontal cortex, debranching and shrinkage of dendrites can occur in
the medial prefrontal cortex which is attributed to cognitive rigidity,
whereas neurons in the orbitofrontal area cause dendritic expansion
which may be associated with increased vigilance [58,75]. Based on
these studies, a history of stress exposure may have a continuous effect
on future stress reactivity, seizure susceptibility, and brain function,
particularly in the hippocampus.

5. PS may affect seizure via HPA axis programming

Severalmechanisms affect the developing brain due to excessive cor-
ticosteroid exposure. During the prenatal period, 11β-hydroxysteroid
dehydrogenase 2 (11β-HSD2) inactivates corticosteroids right after
stress exposure [76,77]. In late pregnancy, the mother's HPA axis does
not respond to stress as before, and postnatally, the stress hyporespon-
sive period reduces the developing brain's exposure to corticosteroid
[76,78]. The duration of stress hyporesponsive period in humans is
not completely clear, but it is believed to happen between 6 and
12months of age, while the human HPA axis responds to stressful situa-
tions up to three months after birth [76]. Findings from animal and
human studies demonstrated physiological adaptations, including brain
oxytocin and prolactin system (one of the mechanisms in stress hypore-
sponsive period, which develop to decrease the activity and emotional
response of the HPA axis in the peripartum period), associated with
the prevention of the opioid and noradrenergic excitatory system of
the HPA axis [79]. These adaptations ensure a healthy development by
protecting the offspring from prolonged exposure to additional cortico-
steroids. Repeated exposure to stress during pregnancy can significantly
reduce the expression andprotective activity of 11β-HSD2 [80]. See Fig. 2
for details of mother-placenta-fetus unit; as illustrated in Fig. 2, placental
CRH and 11β-HSD2 play important roles in modulating the program-
ming effects of PS [81].

On the other hand, GCs, particularly synthetic GCs such as dexa-
methasone, are not appropriate substrates for 11β-HSD2. Therefore,
a considerable part of them crosses the placenta, and only 17% of the
synthetic GC is metabolized by 11β-HSD2 [82]. Consequently, it not
only causes the indirect activation of the HPA axis, but also exposes
the fetus to direct circulation of maternal cortisol, thereby altering
fetal programming [82,83]. As 11β-HSD2 is the main preventer of
prolonged offspring exposure to additional corticosteroids, there may
be a difference in 11β-HSD2 activity in male and female pregnancy.
Sex differences must be investigated by including both sexes in neuro-
behavioral studies. Still, further studies are needed to examine the
long-life effects of PS in the process of brain maturation. Studies have
so far focused on two topics. First, PS can disrupt brain development
by affecting neuronal differentiation, gene transcription, and other pro-
cesses that can lead to defects in neuronal connections and network [76,
84]. Between 24 and 32 weeks of gestation, the human brain is at its
highest level of sensitivity, when immature and primitive oligodendro-
cytes have predominantly gathered in the cerebralwhitematter [85,86].
Furthermore, other neuronal structures which are involved in the
process of proliferation, migration, and differentiation, are exclusively
vulnerable to injury [86]. Observations demonstrated that in vitro
exposure to corticosteroids decreases the rate of cell division, thus lead-
ing to the differentiation of cells rather than their proliferation [87,88].
Subsequently, it is assumed that endogenous corticosteroids may play
a role in thematuration anddevelopment of brain in the late fetal period
by inhibiting cell division aswell as expressing the genes responsible for
the differentiation of mature phenotype [76]. Second, a study suggests
that external environmental exposures revealed on the genome as epi-
genetic mechanisms can have life-long effects on the brain [89].
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Epigenetics mostly refers to alterations in a chromosome that modu-
lates gene expression and results in phenotype changes [90,91]. Briefly,
epigenetics is described as any heritable phenotypic traits that do not
involve a change in the Deoxyribonucleic acid (DNA) sequence; such
changes can be embedded with mechanisms such as histone modifica-
tions and DNAmethylation [89]. Prenatal stress affects brain microRNA
(miRNA) sections and further leads to disruptions in the adaptation and
development of the offspring [92]. In addition, DNA methylation in the
11β-HSD2 gene promoter is considered as a consequence of repeated
stress exposure of themother, which is responsible for reducing the ex-
pression of 11β-HSD2 mRNA [93].

Additionally, high levels of GC in the fetus lead to the downregula-
tion ofMR andGR in the hypothalamus andHPA axis, particularly inside
the paraventricular nucleus, which reduces the feedback mechanism of
GC secretion. Under such circumstances, the hypothalamus secretes
much more CRH, thus leading to higher levels of Adrenocorticotropic
hormone (ACTH) and consequently maintaining higher levels of GC;
higher levels of GC increase seizure susceptibility and potentiate seizure
intensity. Several studies confirmed this finding, showing that prena-
tally stressed offspring has a higher concentration of GC and an elevated
seizure intensity later in life [31,32,94]. Prenatal stress also increases the
GR:MR ratio in the hippocampus, GR and MR expression in the hypo-
thalamus, and GR expression in the pituitary gland. It permanently af-
fects the expression of both receptor types in HPA axis regions. The
effects of PS are in accordance with a more efficient negative-feedback
within theHPA axis and can thus explain the attenuated stress response
Fig. 3. Epigenetic mechanisms and health outcomes. Environmental factors, including stressor
long-lasting outcomes such as mental disease, neurodevelopmental disorders, cancer, and epil
(Adopted from the National Institutes of Health with modifications.)
observed inmany subjects, including humans and rats [94]. Thus, the al-
terations in receptor density as a consequence of PS exposure may be
the mechanism permitting an adaptive response to later-life stressful
conditions such as epilepsy [37,94].

6. Epigenetic changes in stress and epilepsy

Evidence suggests that major stress during pregnancy potentiates
febrile seizure and causes higher cortisol blood levels [31]. Eventually,
chronic epilepsy appears to be associated with the modulation of gene
transcription and chromatin structure [95]. An overview of epigenetic
mechanisms is shown in Fig. 3 [96].

There are three well-studied epigenetic mechanisms by which
stressors may biologically implant themselves and therefore contrib-
ute tomultiple consequences, including epilepsy, later in life. Studies
indicate that stress can induce alterations through each of these
mechanisms [97]. Thus, early-life stress may be involved in epige-
netics which, in turn, may affect epilepsy through the mechanisms
discussed below.

6.1. DNA methylation

Themechanism ofmethylation suggests that epigenetic changes can
be induced by seizure itself and thus aggravate the epileptogenic condi-
tion [91,92]. Particularly, the enhancement of DNAmethylation enzyme
activity as well as the hypermethylation of DNA has been correlated
s, can affect chromatin by DNA methylation and/or histone modification, thereby, lead to
epsy.
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with a higher seizure susceptibility [91,98,99]. Adenosine and glycine,
regulated by adenosine kinase (ADK) and glycine transporter 1
(GlyT1), respectively, control the transmethylation pathway which
is dependent on S-adenosylmethionine [91,100]. For DNA
methylation, a methyl group should be separated from S-
adenosylmethionine. This is facilitated by DNA methyltransferases
(DNMTs). The product, S-adenosylhomocysteine, is then converted
to adenosine and homocysteine by S-adenosylhomocysteine hydro-
lase [99,101]. An increase in S-adenosylhomocysteine levels due to im-
pairments in the metabolic clearance of adenosine through ADK causes
DNMT inhibition [91,102]. Considering adenosine's role as an essen-
tially final product of DNA methylation, it is concluded that ADK eleva-
tion and subsequent reduction of adenosine can increase the total DNA
methylation in the brain which is observed in chronic epilepsy [103,
104]. Thus, overexpressed ADK and GlyT1 resulting in pathologic DNA
hypermethylation lead to the epilepsy progression [105].

6.2. Histones

Histonemethylation is described as the transfer of amethyl group to
the amino acids of histone proteins synthesizing nucleosomes which
are the basic structural units of chromatin [106,107]. Histones
not only provide support for chromatin structure, but also facilitate
access to transcription factors and, therefore, determine gene
expression [107,108]. Epigenetic alterations occur in N-terminal do-
mains (especially the N-terminals of H3 and H4), including acetylation,
methylation, phosphorylation, biotinylation, ubiquitination, and adeno-
sine diphosphate (ADP)-ribosylation [107,108]. For instance, 3 h after
the induction of status epilepticus with pilocarpine in rats, the
hypoacetylation of histone H4 was found in the promoter of the gluta-
mate 2 receptor (GluR2), in addition to hyperacetylation in the
promoter of the brain-derived neurotrophic factor [107,109]. Changes
in the acetylation of histone H3 and H4 at the Cyclic adenosine
monophosphate response element binding protein (CREB) promoter
in the rat hippocampus were the results of another animal study, dem-
onstrating the important roles of histonemodifications in the control of
epileptic activity [107,110].

6.3. microRNA and epilepsy

miRNA plays a potential role in the development of epilepsy. They
are expressed in a wide variety of organs and cells, and regulate both
pro- and antiinflammatory actions [111]. The biogenesis of miRNAs is
regulated as part of the inflammatory response by altering the tran-
scription, processing, or stabilization of mature or precursor miRNA
transcripts [111]. Accumulating evidence in animal models has shown
the higher expression of miRNA-132 as one of the mechanisms respon-
sible for epileptiform activity in the hippocampal tissue from rats with
induced status epilepticus. Initiation of inflammation in the brain may
contribute to epileptogenesis [107,112]. There is evidence that inflam-
mation potentiates seizure intensity in rats and humans [113,114].
Also, early-life inflammation leads to higher seizure susceptibility later
in life [44,115,116].

7. Seizure-related structural remodeling in the hippocampus

As previously discussed, the oversecretion of stress hormones can
cause acute and chronic alterations in specific parts of the brain, partic-
ularly in the hippocampus, prefrontal cortex, and amygdala. Although
studies have reported that the entire hippocampus shares the same
basic structure, the dorsal (DH) and ventral hippocampus (VH) seem
to have different functions, particularly in the connectivity and distribu-
tion of receptors [117]. It has been revealed that, in spatial learning and
memory, DH plays a vital role while, instead, anxiety, defensive behav-
ior, fear, and stressful situation responses are controlled by VH
[117–120]. Studies conducted so far have concluded thatmorphological
alterations due to PS mostly influence DH [117]. The hippocampus is
formed late in the embryonic life and continues to develop early in
postnatal days [117,121,122].

The hippocampus consists of three main sections: the cornu
ammonis, dentate gyrus, and subiculum [123,124]. Connections be-
tween these intrahippocampal regions comprise excitatory feedback
circuits which can generate an epileptic state [123].Widespread cortical
regions' input into hippocampal formation synapses on the entorhinal
cortex. The efferent connections of entorhinal cortex project mostly to
dentate granule cells but also to CA3 pyramidal ones [125,126]. CA3 py-
ramidal cells and hilar cells receive excitatory glutamatergic input from
projections known as mossy fibers [123]. Through Schaffer collaterals,
pyramidal cells in CA3 develop an axonal connection to mossy fibers
(Hilar neurons) in order to create recurrent synapses on the granule
cell dendrites of the dentate gyrus [123]. Interconnections from granule
and hilar cells through recurrent impulses in the hippocampal loopmay
cause an epileptic state [123,127]. The hilus can return the neuronal ac-
tivity arising from the dentate granule cell layer through polysynaptic
pathways [123,128]. Chronic stress can reduce the dendritic spine den-
sity of hippocampal CA3 and granule cells of the dentate gyrus while
also leading to dendritic shrinkage in the CA1 area [129]. Feedback con-
nections between CA3 and the dentate gyrus promote memory forma-
tion but simultaneously make CA3 vulnerable to seizure-induced
excitation [56,129]. Excitatory amino acids (EAAs) and their receptors
are also involved. For instance, the debranching of pyramidal cells in
the CA3 area due to chronic stress affected by mossy fiber terminals is
fully packedwith glutamate vesicles [129]. It has been reported that ex-
posure to predatory and restraint stress on gestation days 15, 16, and 17
in rats resulted in higher GC blood levels in pups and dams. Also, in the
CA1 area, the amplitude and slope of field excitatory postsynaptic po-
tentials were significantly decreased, ultimately causing a reduction in
hippocampal synaptic potentiation and increased mortality rate due to
seizure [130]. Prolonged seizure activity causes the progressive
loss of GABA in target neurons and leads to epileptogenesis condition
[123,131]. In addition, rats exposed to single-prolonged stress demon-
strated the downregulation of MR and GR expression [132]. The study
by Hwang et al. revealed that, in the hippocampus of seizure-sensitive
gerbils, MR and GR levels were higher than those of seizure-resistance
gerbils. Thus, changes of MR and GR in the CA1 region and the dentate
gyrus may be associated with seizure generation in these animals
[126]. In another study, pregnant mice were exposed to restraint stress
twice a day for three days. Ten days after birth, hippocampal slices were
obtained from the offspring, and spontaneous seizure-like events from
the CA1 pyramidal layer were recorded. Both the number and the dura-
tion of seizure activity were decreased in stressed pups compared to
controls. The results suggested that temporal lobe epilepsy in children
who have experienced PS may be decreased [133].

In the following sections, the effects of PS are briefly discussed on the
expression of the N-methyl-D-aspartate (NMDA) receptor, and then
possible mechanisms involved in premature hippocampal injury are
explained.

8. Effect of PS on seizure via the density of NMDA receptors

The consequences of PS can be exerted by changing the expression
of the glutamate N-methyl-D aspartate (NMDA) receptor mainly in-
volved in the establishment of long-term potentiation (LTP) in the
CA1 area [134]. The GluN2B subunit of the receptor appears to play a
role in receptor-dependent synaptic plasticity as well as seizure and
memory [37]. Prenatal stress has been shown to alter synaptic plasticity
in the hippocampus and impair spatial learning and memory [134].
Glucocorticoid released in response to stress alters mRNA expression
for someNMDA receptor subunits in the brain after birth [135]. The im-
paired development of the corticostriatal and corticolimbic pathway
due to NMDA receptor level alteration may provide a suitable condition
for the development of epilepsy [136]. In a study, 68 pregnant rats on
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the 15th, 16th, and 17th days of gestation were exposed to restraint or
predatory stresses. After labor, these pups were compared with those
born in unstressed conditions. The results revealed that stress increases
GC blood levels and causes a significant elevation in the density of
NMDA receptor in different brain regions, including the hippocampus,
making the brain vulnerable to seizure [37]. Another study suggests
that the reduction in NR1 and NR2B subunits of the NMDA receptor in
hippocampal synapses results in a lower interaction between them.
Then, it was concluded that exposure to maternal stress for a long
time leads to the long-lasting dysfunction of the hippocampus which
may continue and be manifested in adulthood [137].

9. Effect of PS on the GABAergic system

The GABA receptors encompass three groups of receptors (A, B, and
C), namely GABAA, GABAB, and GABAC. GABAA and GABAC receptors
are ionotropic, whereas GABAB receptors are metabotropic. GABAA
receptors are GABA-gated chloride channels consisting of 19
known subunits divided into eight classes of α, β, γ, δ, ε, π, θ, and ρ
according to sequence identity [138,139]. From among these recep-
tors, the GABAA receptor is mainly involved in the control of neural
excitability, anxiety, feeding and drinking behavior, circadian
rhythms, cognition, learning, and memory [140]. In addition, genetic
mutations in this receptor have a role in some neurological and/or
psychiatric disorders such as epilepsy, depression, and disorders re-
lated to growth such as autism and schizophrenia [141].

Numerous studies have been conducted in order to assess the effect
of PS on the GABAergic system. In a study by Nejatbakhsh et al. [142],
the researchers observed that PS increased the α5 subunit of the
GABAA receptor in infant rats' hippocampus. They also noticed the sig-
nificant reduction of first tonic–clonic seizure latency in pups exposed
to stress. Furthermore, these pups experienced a longer duration of
tonic–clonic seizures. Finally, at P14 and P21, PS increased the total
score of seizure in rats. Caraiscos et al. [143] also reported the samefind-
ing by observing an increase in the expression of GABAA receptor α5
subunit in patients with epilepsy. In CA1 pyramidal neurons, this sub-
unit mediates tonic GABAergic inhibition. Also, the expression of the
GABAA receptor δ subunit increases in patients with epilepsy. This sub-
unit has the same function of the α5 subunit but in dentate gyrus gran-
ule cells [144]. Thus, some aspects of PS-induced potentiation in seizure
might be mediated via alterations in GABAergic system in certain brain
structures such as the hippocampus.

10. Effect of PS on adrenergic systems

The autonomic nervous system has two components: sympathetic
and parasympathetic systems. Numerous systems of the body such as
cardiovascular, renal, and respiratory ones are affected by these two
systems. Adrenal medulla and systemic sympathetic system secrete
catecholamines which participate in the response to stress. Corticoids
derived from the adrenal cortex have the same effect [145]. All circulat-
ing epinephrine and some of the norepinephrine (NE) are secreted by
the adrenal medulla to facilitate fight or flight reaction in the stress re-
sponse [146]. Norepinephrine is released from noradrenergic terminals
primarily located in locus coeruleus which sends projections containing
NE to different parts of the brain. Brain regions involved in epilepsy also
receive these projections [147,148]. Studies demonstrate that NE acts
like an anticonvulsant, and agents increasing extracellular NE levels
have anticonvulsant effects [149–154]. On the other hand, the decrease
in extracellular NE levels or adrenergic receptor antagonists elevates
seizure susceptibility [155,156]. Nevertheless, according to the findings
of some human and animal studies, under specific circumstances,
elevated NE levels may have proconvulsant effects. Therefore, the
level of NE determines its role as an anticonvulsant or proconvulsant
[157–159]. The mechanisms of drugs used to control seizure are based
on these two contradictory findings; carbamazepine decreases the NE
level in cerebrospinal fluid in patients with mania [160], while phenyt-
oin and valproic acid elevate NE levels to control epilepsy [161,162]. In a
study by Moyer et al. [163], the researchers observed that PS alters NE
levels in brain regions. Moreover, results of the study by Peters [164]
demonstrated that PS changes NE levels, but the increase or decrease
in NE level and the significance of level modification depend on the
age of offspring and the brain region. Furthermore, some studies have
investigated the effects of PS on the sympathetic nervous system by
assessing the heart rate, heart rate variability, and respiratory sinus ar-
rhythmia of fetuses. DiPietro et al. [165], for instance, suggested that
PS has a correlation with heart rate and heart rate variability later in
infancy. Furthermore, in a study by Alkon et al. [166], the researchers
explained that psychosocial risk factors such as poverty decrease the in-
tensity of sympathetic nervous system reactivity from 6 months to
5 years of age. Another study also demonstrated an association between
infant respiratory sinus arrhythmia reactivity to a series of frustration
tasks and high levels of maternal stress biomarkers at weeks of preg-
nancy [167]. Prenatal stress was associated with a reduction in α2 ad-
renergic receptor binding in several brain regions in 60-day-old
offspring rats [168], suggesting a mechanism by which stress may in-
crease seizure susceptibility in offspring rats [169]. Maternal stress ex-
posure has also been suggested to influence fetal development via
altering brain adrenergic receptors' binding as well as decreasing pla-
cental NE transporter protein levels [168,170] and uterine blood flow
mediated by α1-adrenergic receptors [171]. Thus, it can be concluded
that the effects of PS on adrenergic system and sympathetic nervous
system are mainly due to effects on the neurotransmitter system and
functioning of autonomic nervous system.

11. Long-lasting and inheritable properties of PS-induced changes

Stressful incidents during early life may have a wide range of nega-
tive effects on the brain and behavior of offspring, and numerous psy-
chiatric and behavioral disorders in adulthood may originate from
these incidents [172,173]. Several studies have demonstrated that PS
is correlated with stress responses and depressive-like behaviors. This
phenomenon has been referred to as “fetal programming” in numerous
studies [174–176]. Psychiatric disorders result from HPA axis dysfunc-
tion caused by the effects of PS on fetal programming [77,177]. In a
study conducted by Brunton et al. [176] on rodent offspring, the
researchers observed that social stress during pregnancy significantly
increased the responses of HPA axis to later physical and psychological
stresses. These responses encompass the higher secretion of ACTH and
GC in response to stress and higher expression of CRHmRNA in theme-
dial parvocellular division of the paraventricular nucleus. The increased
HPA axis in response to PS may be explained by central GC negative
feedback regulation impairment. This idea has been supported by
Brunton et al. [176] as the decreased mRNA expression in the hippo-
campus for the MR. On the other hand, Maccari et al. [77] stated that
the reduced mRNA expression for the GR plays an important role in ad-
dition to theMR. Furthermore, in the study by Grundwald et al. [178], it
was found that the effects of PS on HPA axis regulation can be passed to
coming generations in a sex-dependent manner, implicating neuropsy-
chiatric disorders with developmental origins. Studies also report that
PS may be correlated with the development of schizophrenia in adult-
hood. In a study conducted by Khashan et al. [179], it was suggested
that experiencing maternal stress during the first trimester of preg-
nancy increases the risk of schizophrenia. Also, some other studies indi-
cated that exposure to stressful events, including hypoxia, starvation,
and infections, can be associatedwith an increased risk of schizophrenia
[180–182]. Other psychiatric disorders such as affective disorders
can also be correlated with PS. Based on studies, maternal immune
and stress responses have a significant relationship with the major
depressive disorder [183,184]. Another risk factor for major depres-
sive disorder is maternal exposure to famine in the second and third
trimesters, revealing the importance of maternal nutrition in the
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neurodevelopment of offspring [185]. In addition to exposure to ma-
ternal risk factors, some studies have shown that traumas in early life
may also cause long-term complications in the offspring. Maternal
separation (MS) in early life has been chosen as a type of trauma to
examine these complications [186]. Animal studies examining the
effect of MS on the behavioral development of offspring have yielded
different outcomes. Some have suggested that the number of MS
paradigms causes changes in HPA axis response to stressful events,
leading to the induction of anxiety and depressive-like behaviors
[187–189]. On the other hand, some studies have revealed that MS
may cause animals to take risks and seek novel ways to cope with
the new situation [190–192]. In a study by Weiss et al. [193], the ef-
fects of unpredictable MSwere compared to the effects of a combina-
tion of unpredictable MS with maternal stress on behavioral
development. They concluded that the combination of unpredicted
MS with maternal stress affects behavior more severely. In addition,
parental stress before gestation can affect reproduction system both
in dams and pups. It has been reported that parental stress before
gestation decreases fertility rate in dams and changes sex ratio in
favor of females in the pups. Meanwhile, it not only decreases sex
hormones in parents (both mother and father), but also diminishes
sex steroids in immature pups [194,195]. These are some examples
of inheritable properties of early life stress including PS mostly by
epigenetics mechanisms.

In conclusion, variations induced by prenatal and early-life stress
may have long-lasting and even inheritablemolecular and cellular alter-
ations in the offspring. These changes may, in turn, justify many psychi-
atric and behavioral disorders, including seizure, in adulthood. Thus,
appropriate management of pregnant women and their offspring and
preventing their exposure to the mentioned risk factors seem to be
vital in promoting the health of future generations.
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