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ABSTRACT We determined the in vitro interactions between echinocandins and
azoles against 10 multidrug-resistant Candida auris strains by use of a microdilution
checkerboard technique. Our results suggest synergistic interactions between mica-
fungin and voriconazole with fractional inhibitory concentration index (FICI) values
of 0.15 to 0.5, and we observed indifferent interactions when micafungin was com-
bined with fluconazole (FICI, 0.62 to 1.5). Combinations of caspofungin with flucona-
zole or voriconazole exhibited indifferent interactions. No antagonism was observed
for any combination.
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andidiasis infection caused by uncommon Candida species has increased in recent

years, particularly among immunocompromised patients (1). In the Metschnikowi-
aceae clade, Candida auris causes various infections, ranging from superficial mucocu-
taneous candidiasis to severe bloodstream infections (2, 3). Remarkably, in recent years,
multidrug-resistant C. auris has emerged in Asia, Africa, Europe, and the Americas,
resulting in several cases of fungemia (3-14). Although European Society of Clinical
Microbiology and Infectious Diseases (ESCMID) guidelines for the diagnosis and man-
agement of candidiasis recommend the use of azoles, polyenes, and echinocandins (15,
16), toxic effects of amphotericin B restrict its clinical application. In addition, resistance
to azoles and echinocandins in Candida species has become a severe clinical challenge
(17). Fungemia due to C. auris is associated with a high mortality rate and treatment
failure, in addition to being potentially resistant to azoles, polyenes, and echinocandins
(18-21). Thus, accurate identification of C. auris and in vitro antifungal susceptibility
testing are highly recommended (22). Because of the limited available treatment
choices and high rate of therapeutic failures, novel strategies are needed to improve
patient outcomes (23). Combinations of echinocandins and azoles seem to be attractive
treatment regimens, as both drug groups have different antifungal targets and modes
of action. We therefore investigated the efficacy of echinocandins plus azoles against
multidrug-resistant C. auris clinical isolates.

We studied 10 C. auris strains from patients with candidemia in tertiary care
hospitals in Delhi, including fluconazole-resistant (n = 10) and micafungin-resistant
(n = 3) isolates (according to non-species-specific Candida species breakpoints of >4
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TABLE 1 In vitro interactions of caspofungin with fluconazole and voriconazole against
Candida auris

CAS + FLU® CAS + VRC®

MIC (pg/ml) MIC (ng/ml)
Strain no. CAS FLU CAS/FLU FICI/INT CAS VRC CAS/VRC FICI/INT
VPCI 482/P/13a 2 =64 1/32 0.75/IND 2 2 1/0.5 0.75/IND
VPCl 1132/P/132 2 32 1/8 0.75/IND 2 0.5 1/0.063 0.62/IND
VPCI 1133/P/13¢ 4 =64 2/64 1/IND 4 1 2/0.25 0.75/IND
VPCI 265/P/149 4 32 2/32 15/IND 4 8 2/0.25 0.75/IND
VPCl 1510/P/14¢ 0.5 32 0.5/32 2/IND 0.5 4 0.5/4 2/IND
VPCI 1514/P/142 1 =64 0.5/32 0.75/IND 1 05  1/0.25 1.5/IND
VPCI 266/P/144 2 =64 1/32 0.75/IND 2 0.5 1/0.25 1/IND
VPCI 267/P/14a 2 32 1/8 0.75/IND 2 05  2/0.063 0.62/IND
VPCI 487/P/149 1 =64 0.5/8 0.56/IND 1 1 0.5/0.125  0.62/IND
VPCI 518/P/14¢ 0.5 =64 0.25/8 0.56/IND 0.5 1 0.25/0.25  0.75/IND

aFluconazole-resistant isolates (n = 10).
bCAS, caspofungin; FLU, fluconazole; VRC, voriconazole; FIC, fractional inhibitory concentration index;
IND, indifference; SYN, synergy; INT, interpretation.

and =8 ug/ml for fluconazole- and echinocandin-resistant species, respectively) (Tables
1 and 2) (14). All isolates were previously identified by conventional and molecular
methods, i.e, CHROMagar Candida medium (Difco, Becton Dickinson & Company,
Baltimore, MD, USA), microscopic morphology on cornmeal agar (Difco Laboratories,
Detroit, MI, USA) with 1% Tween 80, and sequencing of internal transcribed spacer
ribosomal DNA (rDNA) and D1/D2 regions. In addition, the isolates were identified by
matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI
Biotyper OC version 3.1; Bruker Daltonics, Bremen, Germany) (18). All strains were
stored in 10% glycerol broth at —80°C at the Department of Medical Mycology,
Vallabhbhai Patel Chest Institute, University of Delhi, and were subcultured on Sab-
ouraud dextrose agar (SDA) supplemented with 0.02% chloramphenicol at 35°C for 3
days to ensure purity and viability. All isolates were subcultured again on SDA before
preparation of the inoculum. The interactions of caspofungin and micafungin with
fluconazole or voriconazole were investigated by using a microdilution checkerboard
method based on the CLSI reference technique with 96-well microtiter plates (24).
Fluconazole (Pfizer, Groton, CT, USA), voriconazole (Pfizer), caspofungin (Merck), and
micafungin (Astellas, Toyama, Japan) were dissolved in 100% dimethyl sulfoxide
(DMSO). Drug dilutions were prepared to obtain four times the final concentration.
Concentrations ranged from 8 to 0.016 wg/ml for caspofungin, 8 to 0.016 and 1 to 0.002
ug/ml for micafungin, 64 to 1 wg/ml for fluconazole, and 16 to 0.25 and 1 to 0.016

TABLE 2 In vitro interactions of micafungin with fluconazole and voriconazole against
Candida auris

MFG + FLU< MFG + VRC¢
MIC (pg/ml) MIC (pg/ml)
Strain no. MFG FLU MFG/FLU FIC/INT MFG VRC MFG/VRC  FICI/INT

VPCl 482/P/134 025 =64 0.25/64 15/IND 025 2 0.016/0.5 0.31/SYN
VPCI 1132/P/13¢ 0.5 32 0.25/4 0.62/IND 0.5 0.5 0.016/0.125 0.28/SYN

VPCI 1133/P/1326 8 =64 4/32 0.75/IND 8 1 2/0.25 0.5/SYN

VPCI 265/P/14° 0.5 32 0.5/8 1.25/IND 0.5 8 0.063/1 0.25/SYN
VPCI 1510/P/14¢  0.125 32 0.063/8 0.75/IND 0.125 4 0.016/0.25  0.19/SYN
VPCl 1514/P/1426 8 =64 8/16 1.12/IND 8 05 1/0.125 0.37/SYN
VPCI 266/P/14 025 =64 0.25/32 1.25/IND 025 05 0.008/0.125 0.28/SYN
VPCI 267/P/14%6 8 32 8/8 1.25/IND 8 05 1/0.125 0.37/SYN
VPCI 487/P/14° 4 =64 4/32 1.25/IND 4 1 0.5/0.125 0.25/SYN

VPCI 518/P/14¢ 0.5 =64 0.25/64 1/IND 0.5 1 0.016/0.125 0.15/SYN

aFluconazole-resistant isolates (n = 10).

bMicafungin-resistant isolates (n = 3).

°MFG, micafungin; FLU, fluconazole; VRC, voriconazole; FICI, fractional inhibitory concentration index;
IND, indifference; SYN, synergy; INT, interpretation.
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ng/ml for voriconazole. The concentration ranges of micafungin and voriconazole
depended on the MIC results of each isolate. For two-dimensional microplate prepa-
ration, i.e., caspofungin plus fluconazole, caspofungin plus voriconazole, micafungin
plus fluconazole, and micafungin plus voriconazole, 50 wl of each concentration of
echinocandins (caspofungin and micafungin) was added to columns 1 through 11, and
then 50 ul of azoles (fluconazole and voriconazole) was added to rows A through H,
respectively. The wells of column 11 and the wells of row H contained 50 ul of RPMI
medium containing 1% of the solvent. Row H and column 11 contained the echino-
candins and azoles alone, respectively. Column 12 was the drug-free well that served
as the growth control. The maximal final concentration of DMSO in the test wells was
<1%. Trays were stored at —80°C until the day of testing. After the microtiter trays were
defrosted, 100 wl of the inoculum was added to each well. Briefly, homogeneous
suspensions were measured spectrophotometrically at 530 nm wavelength to a per-
centage transmission in the range of 75% to 77%. The final concentration of the stock
inoculum suspensions of the isolates tested ranged from 1 to 3 X 103 CFU/ml, as
determined by quantitative colony counts on Sabouraud glucose agar (Difco). Plates
were incubated at 35°C and examined visually after 24 h to determine MIC values for
the drugs alone and in combination. The MIC endpoints were determined with the aid
of a reading mirror and were defined as the lowest concentration of drug that
significantly reduced growth (=50%) compared with the growth of a drug-free control.
For calculations, high off-scale MICs were raised to the next log, dilution step, while the
low off-scale MICs were left unchanged (25). To assess the interactions of combinations
of drugs, we calculated the fractional inhibitory concentration index (FICI). The FICI was
defined as FICI = FIC, + FICg = (CA/MIC,) + (Cg/MICg), where MIC, and MICg are the
MICs of drugs A and B alone, and C, and Cg are the concentrations of the drugs in
combination, in all wells corresponding to an MIC. The interaction was considered
synergistic when the FICl was <0.5, indifferent at >0.5 to =<4.0, and antagonistic at >4
(24).

The results for the tested drugs alone and in combination against 10 C. auris strains
are summarized in Tables 1 and 2. The MIC ranges of drugs alone against the strains
were 32 to =64 pg/ml for fluconazole, 0.5 to 8 pug/ml for voriconazole, 0.5 to 4 ug/ml
for caspofungin, and 0.125 to 8 ug/ml for micafungin. Based on findings with the
checkerboard microdilution assay, when caspofungin was combined with fluconazole,
the MIC ranges for caspofungin and fluconazole decreased to 0.25 to 2 ug/ml and 8 to
64 ng/ml, respectively; the combination exhibited indifferent activity against all 10
strains (FICI, 0.56 to 2). When caspofungin was combined with voriconazole, the MIC
ranges for caspofungin and voriconazole decreased to 0.25 to 2 ug/ml and 0.063 to 4
ng/ml, respectively, and demonstrated indifferent activity against all strains (FICI, 0.62
to 2) (Table 1). When micafungin was combined with fluconazole, the MIC ranges of
micafungin and fluconazole were reduced to 0.063 to 8 ug/ml and 4 to 64 pg/ml,
respectively; indifference was also observed (FICI, 0.62 to 1.5) (Table 2). Synergistic
effects of micafungin with voriconazole were shown against the 10 multidrug-resistant
C. auris isolates (FICI, 0.15 to 0.5); the MIC ranges of micafungin and voriconazole were
reduced to 0.008 to 2 pug/ml and 0.125 to 1 ug/ml, respectively (Table 2). Overall, no
antagonistic effects were observed for any combination.

In this study, we used the checkerboard microdilution method to analyze drug-drug
interactions of echinocandins with azoles against multidrug-resistant C. auris. The
emergence of new species and antifungal resistance has raised the issue of using
alternative therapeutic strategies. Evidence to support treatment choices for multidrug-
resistant C. auris disease is rare. Except for one study (20), in vitro antifungal profiles are
relatively scarce and based on low numbers of test isolates (14, 19, 21). The in vivo
efficacy of antifungal therapy against C. auris is undetermined, and in vitro data from
different sources are inadequate. Use of echinocandins is the recommended treatment
for patients with potent activity, an excellent safety profile, and favorable pharmaco-
kinetics (26-28), but unsuccessful treatment of C. auris infections with fluconazole,
voriconazole, amphotericin B, caspofungin, and anidulafungin has been reported (6).
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On the other hand, micafungin is used for prophylaxis and treatment with a broad
spectrum of activity in both neutropenic and nonneutropenic patients (15, 29). Con-
cordant with other reports (30-32), micafungin activity was shown to be as effective as
caspofungin in vitro against Candida glabrata isolates with and without fks mutations.
Micafungin was also effective in vivo for decreasing the fungal burden in mice infected
with C. glabrata with fks mutations. It seems that lower concentrations of drugs
cause fewer side effects and improve the treatment outcomes. We have shown that
interaction between micafungin and voriconazole exhibited synergistic activity
against multidrug-resistant C. auris strains, suggesting that the combination may be
considered for patients with candidiasis. However, in vivo studies with suitable animal
models of C. auris infection are needed to confirm the in vitro results presented here.
Clearly, more research is indicated to explore clinical management. In conclusion, the
combination of micafungin and voriconazole exhibited synergistic activity against
multidrug-resistant C. auris, suggesting that this is an alternative approach to overcome
antifungal drug resistance. However, use of this combination therapy in vivo and
determination of the underlying mechanism of this synergistic action need further
study.
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