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A B S T R A C T

Despite the prominent progress in understanding cancer immunosurveillance mechanisms, there are some types
of problems which have been identified to hinder effective and successful immunotherapy of cancers. Such
problems have been ascribed to the tumor abilities in the creation of a tolerant milieu that can impair immune
responses against cancer cells. In the present study, we represent possible approaches for metabolic repro-
gramming of T cells in cancer immunotherapy to overcome tumor metabolic impositions on immune responses
against cancer cells. Metabolic suppression of effector immune cells in tumor milieu is one of the important
strategies recruited by tumor cells to escape from immunogenic cell death. We have investigated the metabolic
reprogramming of T cells as a method and a possible new target for cancer immunotherapy. Synergic effects of
PPAR ligands in immunotherapy of cancers on the metabolic reprogramming of T cells have been noticed by
several studies as a new target of cancer immunotherapy. The current wealth of data like this promises a future
scenario which the consideration of metabolic restriction in the tumor microenvironment and administration of
therapeutic agents such as PPAR ligands to overcome metabolic restrictions on T cells (refreshing their func-
tionality) may be effective and enhance the accountability and efficacy of cancer immunotherapy.

1. Introduction

Cancer prevalence is increasing such that the number of newly di-
agnosed cases in 2018 has amounted to 18.1 million. Although the main
causes of cancers have been attributed to genetic disorders and DNA
mutation, other factors such as inflammation and infectious diseases,
diet, lack of exercise, tobacco, alcohol, and industrial exposures are
considered as remarkable related risk factors for the development of
cancers [1,2].

Paul Ehrlich for the first time used the term cancer im-
munosurveillance. After Paul Ehrlich's theory, several experimental
evidence have confirmed that host defense against tumors depends on
immune responses [3,4]. Obviously, the host immune system can detect
many cancer antigens and arrange an immune response against them.
Nonetheless, tumor expansion indicates that the cancer cells must have
escaped from the immune system. Surprisingly, despite the existence of
several immunogenic antigens in many cancers, in most cases, the
tumor immunogenic cell death may be unachievable [5].

In the recent decade, the cancer treatment era has been re-
volutionized by immunotherapy through immune response modulation
against tumor cells and solving the shortcomings of highly morbid and
insufficient therapeutic approaches such as radiotherapy and che-
motherapy [6].

In recent years, new studies have been conducted in understanding
the signaling pathways regulating immune responses against tumor
cells and the potentiality of immunotherapy in cancer treatment.
However, there are many obstacles hindering successful im-
munotherapy such as the influences of negative regulatory pathways,
secretion of inhibitory factors, generation of the tolerant micro-
environment by tumors, and antigen switching potentiality by the
outgrowth of escaped mutants [7].

Although new therapies have brought a significant cure rate into
cancer treatment, in most cases, complete destruction of tumors has not
been executable. Among all parameters and factors hindering im-
munological responses against cancer cells, tumor microenvironment
impositions on effector immune cells have been the subject of intense
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research. One of the important immunosuppressive effects of the tumor
microenvironment has been attributed to immune cells metabolic reg-
ulation by the tumor microenvironment.

Along with the stimulation of T lymphocytes to gain effector phe-
notype, several other metabolic alterations occur as well which affects
the functionality of T cells. In addition, cancer cells produce and release
various metabolites in tumor milieu which can suppress the activity of T
cells [8,9]. The production of ATP in tumor cells depends on glucose
conversion to lactate via aerobic glycolysis rather than oxidative
phosphorylation in mitochondria [10]. Hence, in comparison with
normal cells, cancer cells consume higher amounts of glucose to meet
their metabolic requirements. Furthermore, tumor cells produce higher
amounts of end-products of metabolic pathways such as lactic acid and
carbonic acid compared to normal cells due to higher metabolic rates
[11].

Cytotoxic T lymphocytes are central players in controlling infectious
diseases and cancer. Tumor-infiltrated CD8+ T lymphocytes undergo
metabolic exhaustion in the tumor microenvironment. Hence, the me-
tabolic reprogramming of tumor-specific T cells may provide an im-
portant therapeutic approach for cancer treatment [12].

In the previous studies, the mammalian target of rapamycin (mTOR)
and AMP-activated protein kinase (AMPK) have been considered as the
main intracellular energy sensors that control and regulate metabolic
reprogramming in immune cells. Recently, it has been reported that the
activation of PPARs as mitochondrial biogenesis key regulators can lead
to metabolic reprogramming of T cells and increase antitumor im-
munity [13–15].

Under the scope of this review, we investigate the chance of treat-
ment with PPAR agonists for the metabolic reprogramming of active T
cells and enhancing their antitumor activity in the tumor micro-
environment. It can be expected that immunotherapy procedures such
as programmed cell death protein 1 (PD-1) blockade may have better
efficacy in combination with therapies regulating T cell metabolism in
the tumor microenvironment. It is believed that persistent PD-1 ligation
can enforce T cell exhaustion, a T lymphocyte dysfunction state that
arises during cancer and chronic infections [16–18].

2. Metabolic regulation of immune cells by tumor
microenvironment

To gain effector function in T cells stimulation process, several al-
terations occur in metabolic pathways as well, which affects the T cells
functionality. In addition, cancer cells produce and release various
types of metabolites in tumor milieu which may suppress the activity of
effector T cells [8].

In 1920, Warburg reported glycolysis as the major source of energy
production in cancer cells even under normal oxygen concentrations. As
a result, ATP production in cancer cells depends on aerobic glycolysis
and conversion of glucose to lactate [10]. Production of ATP via gly-
colysis is inefficient due to the decreased rate of ATP production per
glucose unit. Therefore, cancer cells consume higher amounts of glu-
cose compared to normal cells to meet their metabolic needs [19]. In
addition, due to the higher metabolic rates in tumor cells, they produce
a higher number of protons (H+) in comparison to normal cells [11].

On the other side, the metabolic profile of T lymphocytes is de-
termined based on their differentiation state. Resting naïve T cells
metabolic needs mainly depend on mitochondrial oxidation of fatty
acids or pyruvate. After encounter with antigen and stimulation of T
cells, metabolic and signaling pathways within T lymphocytes shift
toward functionality and proliferation. These alterations mainly include
metabolic changes focused on the production of biosynthetic inter-
mediates such as nucleic acids, proteins, and components of the mem-
brane, which are necessary for proliferation and cell growth [20]. The
acquisition of effector function has specific metabolic and biosynthetic
needs and T cells increase glycolysis and glucose uptake upon activa-
tion. Moreover, effector T lymphocytes have higher rates of glycolysis,

fatty acid synthesis, and amino acid metabolism similar to most can-
cerous cells. Memory T cells stay in the blood circulation after termi-
nating the immunogenic responses by the rapid responses to the same
antigen. It has been shown that memory cells metabolism mainly de-
pends on mitochondrial oxidative phosphorylation as well as naïve T
cells. Regulatory T cells are not usually affected by tumor micro-
environment metabolites and they have the same metabolic profile as
exist in naïve cells, however, Th17 and Th1 cells depend mainly on
glycolysis, indicating that Treg cells preserve their function in tumor
microenvironment [21]. Transcription factor FOXP3 in Treg cells can
suppress Myc and glycolysis through metabolic reprogramming which
can subsequently increase oxidative phosphorylation. These adapta-
tions lead to survival of Treg cells in lactate-rich and low glucose en-
vironments such as tumor milieu. This explains how Treg cells can re-
main functional in tumor microenvironment and suppress effector T
lymphocytes [22].

Metabolic fate within T cells can be determined by various signaling
pathways. One of the members of the phosphatidylinositol 3-kinase
(PI3K) pathway, namely the mammalian target of rapamycin (mTOR),
regulates different processes and pathways inside the cells [23].
mTORC1 activation by PI3K determines the type of T cell subsets. Aside
from PI3K, other mechanisms including the essential nutrients avail-
ability can activate mTORC1. Effector T cells generation requires
mTORC1 activation, which up-regulates the pentose phosphate
pathway and glycolysis. Moreover, the lack of mTORC1 mostly results
in Treg cell generation [24,25]. On the contrary, AMPK can negatively
regulate mTORC1 and inhibit the glycolysis pathway, although it en-
hances the production of ATP by mitochondrial oxidative phosphor-
ylation [26].

The similarity of metabolic pathways among cancer cells and acti-
vated T lymphocytes in tumor microenvironment makes a competitive
situation for amino acids, glucose, and other nutrients uptake (Fig. 1).
Around most solid tumors, the higher nutrients uptake and glycolysis
rate as well as poor vascularization can impair the activity of effector T
lymphocytes. It has been demonstrated that a high rate of glycolysis by
tumor cells can lead to glucose depletion in tumor milieu, making T
cells exhausted with low cytokine production and anti-cancer ability
[27]. Nutrient deprivation and high metabolic needs of activated T
lymphocytes in tumor milieu can lead to regulatory T cells survival as
they are able to produce energy from sources other than glucose. As a
result, the restriction of tumor-specific effector T cells may be further
boosted in the tumor microenvironment.

Aside from deprivation of key nutrients in tumor milieu, tumor-
produced end-products that are toxic for T cells can suppress their ac-
tivity and functions. Lactate is one of the most important waste pro-
ducts that accumulate in the tumor microenvironment, due to the high
rate of glycolysis by tumor cells. Accumulation of lactate has been in-
dicated to reduce 95 % of cytotoxic T cells cytokine production and
proliferation and 50 % of T cells cytotoxic activity. In addition, glyco-
lytic metabolism in the active T cells can produce and secrete lactate.
Intracellular lactate accumulation is harmful to effector T lymphocytes
and their metabolic status relies upon the secretion of lactate. Increased
extracellular concentration of lactate due to cancer cell metabolism
blocks the secretion of lactate by T cells [28]. Furthermore, lactate has
been demonstrated to impair CD8+ T and CD4+cells motility through
interference with chemokine ligands [29].

Another waste product that can be produced and secreted by cancer
cells is adenosine, which has immunomodulatory impacts. Extracellular
ATP hydrolysis results in adenosine. production and adenosine receptor
(A2R) has immunosuppressive effects [30]. In addition, Treg cells can
express CD39, leading to extracellular ATP hydrolysis [31].

Overall, comprehending the metabolic differences and similarities
between different types of T lymphocytes and tumor cells is important
to improve the efficacy of anti-cancer immune responses.
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3. Peroxisome proliferator-activated receptors (PPARs)

PPARs, known as members of the nuclear receptor family, are li-
gand-activated transcription factors with different isotypes including
PPARα, PPARβ/δ, and PPARγ [32–34]. It is believed that PPARs are at
the lipid metabolism and inflammation crossroad regulating both pro-
cesses. Activity and expression levels of PPARs can be affected by diet,
nutrient, and metabolic status. In general, and aside from their over-
lapping functions, the three PPARs are free fatty acid sensors that can
control several metabolic programs which are necessary for energy
homeostasis [35]. PPARα can be expressed in several metabolically
active tissues, particularly liver, and upregulates many genes involved
in fatty acid utilization including the genes for fatty acid uptake, acti-
vation of fatty acids and their transport process into mitochondria,
mitochondrial and peroxisomal β-oxidation of fatty acids, some en-
zymes in mitochondrial respiration, and hepatic clearance of very-low-
density lipoproteins [36–38]. Fibrate drugs are PPARα agonists that
activate lipid catabolism and lower plasma triglycerides [37,38]. In-
terestingly, PPARα can be upregulated by fasting and is required during
the ketogenesis for ketone bodies production by the liver, which pro-
vide a large energy source for other tissues [39]. PPARγ is known as one
of the important regulators of adipocyte differentiation. This regulator
has an axial role in lipid metabolism by promoting free fatty acid up-
take and accumulation of triacylglycerol in the liver and adipose tissue
[40]. In addition to well-known effects of PPARγ on metabolic systems,
there are several pieces of evidence suggesting that PPARγ also has
important regulatory effects on the immune system particularly T cells
[41]. Thiazolidinedione drugs are known as PPARγ agonists that can
alter the transcription levels of different genes involved in glucose and
lipid metabolism, as well as the modification of energy requirements by
PPARγ ligation. Some candidate genes that can be categorized as the
targets of PPARγ agonists are glucokinase, lipoprotein lipase, GLUT4
glucose transporter, fatty acyl-CoA synthase, fatty acid-binding protein,
and fatty acid transporter protein [42]. PPARβ/δ may have a central
role in the ability of cells to thrive in harsh conditions. PPARβ/δ can be
activated by high concentrations of free fatty acids and is ubiquitously
expressed in many tissues [43]. Following PPARβ/δ activation, it can
mediate the transcription of genes such as antioxidant genes (catalases)
[44]. PPARβ/δ prevents hematopoietic stem cell exhaustion and en-
hances the endurance capacity of muscle cells by lowering oxidative
stress [45]. Using PPARβ/δ agonists in vitro up-regulates the expression
of genes involved in fatty acid catabolism and promotes fatty acid
oxidation in skeletal muscles [46,47]. Notably, PPARs can be regulated

by co-activators such as PPAR gamma coactivator 1α (PGC1α) be-
longing to the PGC-1 family of transcription co-activators controlling
the metabolic status [48].

4. PPAR ligands and metabolic reprogramming of effector T cells

It has been demonstrated that T cells in the tumor microenviron-
ment may undergo several inhibitory mechanisms leading to T cell
dysfunction. Most recently, tumor-specific T cell reinvigoration has
been noticed as a new therapeutic method in cancer immunotherapy
[49]. After T cells priming and gaining effector phenotype, several al-
terations in metabolic pathways can happen within T cells which affect
the functionality of T cells. Moreover, tumor cells can produce and
secrete various types of metabolites in tumor milieu which suppress T
cells activity [8]. Similar metabolism of activated T cells and cancer
cells (aerobic glycolysis) may result in a competition between these
cells for glucose uptake. Interestingly, a higher rate of glycolysis can
restrict the functions of effector T cells. It seems that an increased rate
of glycolysis in the tumor microenvironment by tumor cells can deplete
glucose leading to impairment of the anti-tumor ability of T cells [27].
Using molecules and drugs targeting metabolic pathways within T cells
can result in stable and durable anti-tumor responses. In another word,
manipulation of T cells metabolism can be considered as a target to
improve T cells response against tumor cells [50]. Previous studies have
indicated that reducing tumor metabolic burden on T cells can con-
tribute to create a condition supporting the effectiveness and survival of
T cells in the tumor microenvironment. Examples of these contributions
are as follows: 1) GLUT1 inhibition can potentially ameliorate anti-
tumor T cell responses [51]; 2) Metformin can inhibit acetyl-CoA car-
boxylase through activation of AMPK and promoting fatty acid oxida-
tion [52]; and 3) In the presence of hexokinase inhibitor 2-deox-
yglucose (2-DG), which may suppress glycolysis, in-vitro primed T cells
can show enhanced anti-tumor activity [51]. In the past decade, espe-
cially in recent years, PPAR-γ agonists have received much attention
because of having synergic effects with anti-cancer therapies via mi-
tochondrial activation in effector T cells [53]. These medications,
which have the ability to activate PPAR-γ, alter the transcription of
different genes involved in glucose and lipid metabolism, as well as the
modification of energy requirements (Fig. 2) [54]. Treatment with
PPARs increases the expression of fatty acid transporter and also they
can affect lipid and glucose metabolism [55]. In an interesting study,
Scharping and colleagues have reported that a progressive loss of PPAR-
gamma coactivator 1 α (PGC1α), which programs mitochondrial

Fig. 1. Metabolic competition between effector T cells (using
glycolysis pathway after activation) and tumor cells in tumor
milieu due to similarity of metabolic pathways (aerobic glycolysis)
along with deprivation of glucose and other nutrients can result in
tumor-specific cytotoxic T cells function impairment. Increased
amounts of lactate, adenosine, Indoleamine 2,3-dioxygenase
(IDO), end checkpoint protein expression can intensify inhibitory
effects of tumor microenvironment on effector T cells exacer-
bating their impaired function.
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biogenesis, exists in tumor-specific T lymphocytes. They suggested that
the metabolic reprogramming of T cells through the enforced expres-
sion of PGC1α in the tumor microenvironment may represent a po-
tential strategy for dysfunctional T cell reinvigoration in cancer im-
munotherapy [15]. Our very recent study showed that activation of
AMPK by metformin can subsequently activate PGC1α/PPAR which
may have positive effects on metabolic reprogramming of tumor-in-
filtrated T cells leading to enhancement of oxidative phosphorylation
and fatty acid oxidation in effector T cells helping them to survive
energy and nutrient deprivation in tumor milieu [56]. Increasing fatty
acid catabolism within CD8+ tumor-infiltrating T cells can improve
their ability to slow tumor progression. Promoting T cell fatty acid
catabolism via PPAR-α ligands can increase the efficacy of melanoma
immunotherapy. It has been indicated that using fenofibrate as an
PPAR-α agonist has synergic effects with PD-1 blockers in im-
munotherapy of cancers through metabolic reprogramming of effector
T cells [57]. Bezafibrate as a PGC-1α/ PPAR complex agonist has been
shown to increase fatty acid oxidation and mitochondrial respiratory
capacity which can increase mitochondrial oxidative phosphorylation
and glycolysis in CD8+ T lymphocytes at the same time leading to
enhanced anti-tumor immunity during PD-1 blockade [53]. In this
study, bezafibrate did not show any large effect on cancer cells as the
used dosage was less than 1/10 the dose that can show cytotoxicity
toward cancer cells [58]. Impaired glycolysis pathways within T cells in
the tumor microenvironment can be an amplifier for PD-1 inhibitory
effects on effector immune cells in the tumor milieu. Concerning this,
Patsoukis and co-workers have reported that up-regulation of fatty acid
oxidation can increase the longevity of T cells in cancers and chronic
infections, and may result in T cells reinvigoration in the tumor mi-
croenvironment. These researchers have also noted that exhausted T
cell reinvigoration somehow depends on the reserve of lipids, which
probably are the only energy generation source by fatty acid oxidation
in T lymphocytes receiving PD-1 signals [59]. Memory T cells ne-
cessarily need catabolic metabolism of fatty acid oxidation to sustain
their survival and bioenergetics and metabolic properties of PD-1

stimulated T lymphocytes to display a surprising similarity to those
memory cells [60]. Another study has also reported that mitochondrial
activation agents such as PPAR-γ can have synergic effects with PD-1
blockade therapy and increase T cell dependent anti-tumor responses
[61]. Studies have demonstrated that upon monotherapy with PD-1
blockade, dysfunctional effector T cells can regain their functionality,
but they will die due to terminal differentiation and energy restriction
in tumor microenvironment. Thus, scientists have suggested metabolic
modulation of T cells in addition to anti-PD-1 immunotherapy of cancer
[62–64]. Mulki and colleagues have shown that mTORC1-PPARγ
pathway is required for proliferation and full activation of CD4+ T
cells. They noted that PPARγ can directly express genes associated with
fatty acid uptake in T helper (CD4+) cells (in both human and mice),
resulting in acquisition of an activated phenotype for CD4+ T cells
[65]. In a review article, Lichtor and colleagues have concluded that
thiazolidinediones as PPAR-γ agonists can have synergic benefits in
immunotherapy of brain tumors via up-regulation of lipid metabolism
[66]. Another study has shown that regulation of fatty acid oxidation by
PPAR ligands can control asymmetric division and exhaustion of he-
matopoietic stem cells [67]. Interestingly, it has also been reported that
PPAR-γ agonists may have positive transcriptional regulatory effects on
development of human dendritic cells (DCs) through controlling lipid
metabolism [68].

While some studies have reported the benefits of PPAR-γ agonists on
T cells metabolic reprogramming leading to the function preservation
of effector T cells in the inhibitory milieu of the tumor microenviron-
ment, there are also studies indicating that PPAR-γ agonists may cause
cell growth arrest and apoptosis in immune cells and tumor cells. Due to
the metabolic reprogramming within cells following treatment with
PPAR-γ agonists, it is believed that they may result in cell growth arrest
and cell death in a broad spectrum of cells particularly tumor cells
[69–71]. It has been demonstrated that activation of PPAR-γ pathway
in T cells may induce apoptosis/cell death and act as a potent anti-
inflammatory signal [72]. It has also been reported that PPAR-γ can
mediate the inhibition of T helper cells [73,74]. Clark et al. reported

Fig. 2. Switching from naïve to effector or cy-
totoxic phenotype of CD8+ T cells can change
the metabolic pathways toward aerobic glyco-
lysis. Glycolysis metabolic pathway of effector
T cells can interfere with the same metabolism
of tumor cells (glycolysis) in tumor micro-
environment leading to exacerbation of ef-
fector T cells disability along with other im-
munosuppressive factors. The similarity of
metabolic pathways in tumor cells and cyto-
toxic T cells, deprivation of glucose and other
essential nutrients along with the existence of
lactate (as one of the waste products) can in-
duce an emulative environment between ef-
fector immune cells and tumor cells which af-
fect the functionality of T cells. Metabolically-
altered tumor-specific effector T cells using
PPAR ligands through activation of fatty acid
oxidation pathways may help T lymphocytes to
overcome exhausted phenotype as well as
other metabolic restrictions in tumor milieu
and reinvigorate activated T lymphocytes
leading to tumor immunogenic cell death.
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that murine T helper cells can be affected by PPARγ leading to in-
hibition of IL-2 secretion, while, IL-2-induced proliferation won’t be
affected [75]. In another study Klotz and colleagues showed that ad-
ministration of PPARγ in autoimmune encephalomyelitis can amelio-
rate histopathological signs and clinical course of the disease via NFκB
DNA-binding activity and prevention of inflammation only in absence
of acute relapse phase [76]. The immunoregulatory effects of PPARγ
have also been reported in a study by Hontecillas and coworkers. They
reported that deletion of macrophage-specific PPARγ may exacerbate
the clinical and pathological symptoms of inflammatory bowel disease
[77]. Elsewhere, it was reported that PPAR-γ ligand activation can lead
to apoptosis and cell death in transformed, but not normal T lympho-
cytes [78].

Aside from these types of reports, at first, it can be stated that PPAR-
γ agonists generally have positive effects on tumor destruction. Several
studies have demonstrated that PPAR ligands like thiazolidinedione
compounds can be effective in the prevention of cancers and also can be
used as adjuvant therapy in cancer treatment [79–83]. Secondly, as we
discussed above, recent studies have a tendency toward exploring the
benefits and positive effects of PPARs in the immunotherapy of cancer.

5. Conclusion

Although it is undeniable that immunotherapy has improved the
treatment of cancers, in vivo studies and clinical trials have shown that
in some cases successful immunotherapy and tumor destruction by the
immune system may be unachievable due to multiple im-
munosuppressive parameters affecting the appropriate immune re-
sponses against tumor cells. Metabolic impositions of tumor micro-
environment on tumor-specific effector T cells have amounted as one of
the axial obstacles which can impair the functionality of T cells in the
tumor milieu. We targeted PPAR agonists as a therapeutic agent causing
T cells metabolic reprogramming. These agonists may help to reverse
the exhausted phenotype of T cells in tumor microenvironment helping
other immunotherapy methods like PD-1 monoclonal antibodies in
cancer treatment. The obtained data and the co-administration of PPAR
agonists with immunotherapeutic agents may provide new horizons for
increasing the accountability and efficacy of cancer treatment.
Regarding the novelty of PPAR ligands effects on T cell metabolic re-
programming in the tumor microenvironment and their synergic effects
with cancer immunotherapy, as well as the presence of a limited
number of studies, it is recommended conducting complementary stu-
dies in this field.
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