برر سى نحوه بروز خستگى در عضله ران بيماران با ضايعه نخاعى استفادهكننده از دستگًاههاى باز توانى تحريكى الكتر يكى عصبى كاربردى يكى مطالعه توصيفى

محمدرضا روحى**'، سام الهيارى'

چچییده

پيشزمينه و هدف: در اين پروهش حد بحرانى خستگى عضلانى براى بيماران استفادهكننده از دستگاهماى توانبخشى تحريك الكتر يكى كاربردى بهمنظور راه رفتن بررسى گرديد. اين افراد كنترل عضلانى ارادى نداشته و براى راهرفتن بايد توسط الكتريسيته بهصورت مصنوعى تحريك شوند و به دليل دارا النبودن هر گونه حس عضلانى، خستگى بلموقع تشخيص داده نمى شود. با استفاده از اين سيستمه با ايمنى بيشترى اين كار انجامشده و وروند آموزشى سرعت مى يابد. مواد و روش كار: در ثروهش زمان نزديك شدن به حد بحرانى خستگى عضله ران افراد با ضايعه نخاعى موردبر
 طراحى شد كه عضله ران را تحريك و از نتايج حاصله قبل از رسيدن به حد بحرانى خستگى آن را تشخيص داد.

 آزمايش تمامى افراد طى مدتزمان بيشترى [بهطور متوسط $\mid 1$ درصد ديرتر] دحار خستگى شدهاند. كليدوازهها: تحريك الكتريكى سطحى، ضايعه نخاعى، راهرفتن به كمك ابزار، خستگى

Email: mre.rouhi@gmail.com

اندام تحتانى از دست مىدهند كه باعث محدوديت شديد اين افراد
مقدمـه جمعيت بيمارانى كه از ضــايعه نخاعى در دنيا رنج مى مرند در مـا

 (V)، تـرومـبوز عميق عروق ${ }^{〔}$ (($)$
 اين بيماران درصــورتى كه ســطح A يا B ضــــايعه نخاعى [طبق اســتاندارد جهانى تقسـيمبندى آسـيبههاى نخاعىى] را دا دارا باشــنـد توانايى ايســتادن، راه رفتن و انجام هرگونه حركت مختارانه را در
(كروه مهناسى يزشكى بيومكانيك، واحد علوم و تحقيقات تهران، دانشُكاه آزاد اسلامى، تهر ان، ايران (نويسندمى مسئول)

[^0]مواد و روش كار
در اين مطالعه توصـيفى، آزمايشها بر روى نمونهاى 19 آنرى
 تصادفى از جامعه آمارى انتخابشدهاند اند انجام پذيرفته كه بازه سنى

 ميـانگين اين افراد گزارششــــده اســـت. از تمـامى اين بيمـاران رضـايتنامه آَكاهانه گرفتهشـــده و يروســه آزمايش و و نكات ايمنى بهطور كامل براى آنها تشريح شده است. مطابق دسـتگاه پارااستپ حد ايمن و و مورد تائيد سازمان غذا و داروى آمريكـا در ولتاز تحريكى براى بيماران بين • تا با با ولت با با ولتاز متغير بوده و بهصـــور HY FY ميلى ثانيه عدم تحر يك است (19).

 تا زمانى كه ســاق پاى شـخص بهصـورت • 9 در جه مانند مطالعات پيشـين (••) قرار گیرد. سیس ولتاز از روى اسيلوسكوپ خوانده و يادداشـت شــده و با يك شـيب ثابت اين ولتاز بين صــفر و ولتاز يادداشـتى براى هر بيمار خاص شروع به نوسان مىنمايد. نمودار نمايانگر زمانبندى اين تحر يكات و تقريب آن مىىاشد.

 دنيا موجود اســت كه در آمر يكا پاراالـــتـت (19) و در ايران با با نام

 در زمان اسـتفاده از آنها راه بروند. در گذشــته بدون توجه به رن ان دادن پديده حد بحرانى خسـتتى در عضــلات شـخص، بيماران از دســتگاه پارااســتچ اســتفاده نمودهاند كه اين عمل باعث كاهش ايمنى در مسـافتهاى طولانى و افزايش خطر افتادن ناگهانى آنها شـده اسـت. سيستم پاراواكَ به اين الكَوريتم تشخيص حد بحرانى خسـتتگى عضــلات مجهز نبوده و ســيسـتم پارااســتپ نيز تنها به يافتههاى محدودى در اين موضوع دست يافته است (
) البا با توجه به عدم در دســترس بودن نمونه خارجى اين دســـتغاهها در ايران
 شهيد بهشتى و دانشگاه صنعتى خواجهنصيرالدين طوسى در در ايران
 شبيدسازى انقباض و انبساط عضلات در حالت نشسته يا خوابيده و تشخيص زمان نزديك شدن به حد بحرانى خستگى است.

نمودار (1): نحوه رفتار انقباضى عضله چهارسر حين درصد سيكل راه رفتن طبيعى طى شده (11)

بهوسيله دستگامهاى توانبخشى MVIC • . ٪ قرار دادهشده است زيرا تقريباً در مقايسه نمودار تحريكى ذوزنقهاى استفادهشده و شكل واقعى انقباض عضله چهارسر در صورت رد شدن قدرت شخصى كه مقدار كمى آتروفى عضلانى را قبل از دچار شدن به عارضه پارایلزییا تجربه نموده است، از • 1 درصد قدرت موردنياز در هرلحظه احتمال عدم تحمل وزن شخص بر روى اين عضله شديداً كاهش پيدا مى كند. اين نكته قابلتوجه است كه انتخاب اين درصد بايد بر اساس ميزان
 درصد وى صورت پذيرد اما با توجه به وجود اختلاف در ميزان آتروفى، حداكثر MVIC و حتى شرايط يك شخص در اوقات مختلف

روز مىتواند عدد • ^ درصد را بهعنوان ميانگیين در نظر گرفت.

[^1]علاوه بر تحريكات الكتريكى عضلات شخص بهصورت همزمان دادههاى الكترومايوگرام عضله چهارسر توسط دستگاه ساختهشان مانيتور شده و توسط نروافزار متلب با دادههاى تحر يكات الكتريكى 1. مقايسه شده است. جهت داده گيرى سرعت ضبط اين مازول داده بر ثانيه بوده و خروجى خود را بهصورت نمودارى در متلب نمايش مىدهد. سرعت پردازش كنترلر اءا مگاهرتز بوده است. حد بحرانى خستگى براى عضله چهارسر رسيدن قدرت خروجى اين عضله به •1 درصد قدرت ماكسيمم خود به دلايل ذكرشده ذيل

انتخاب شده است.
「 به معنى حداكثر ميزان انقباض ايزومتريكى داوطلبانه MVIC است (•Y)، در آزمايشات اين پ夫وهش مبناى عدم توانيى راه رفتن

[^2]مورد ז！：مانند مورد \mid است با اين تفاوت كه داراى مقدار شيب بيشترى نسبت به حالت انقباضى بوده و منحنى S شكلى را تشكيل مىدهد． مورد f：پديدهاى كه در عضلات بدون حس اين بيماران رخ مىدهد بهعنوان ملاك ديگرى براى تشخيص حد بحرانى خستگى انتخابشده است．مقدار انقباض مانده در عضله پس از اتمام تحريك الكتريكى است هر چقدر به حد بحرانى خستگى نزديكتر شويم اين مقدار افزايش مىيابد بهصورتى كه پس از اتمام آزمايش و قطع جريان الكتريكى براى چند ثانيه انقباض در عضله بهصورت بصرى قابلتشخيص بوده و سپس بهتدريج به حالت بیى بـى و و لخت خود بازمى گردد．
نحوه تشـــخيص حد بحرانى خســـتـىى با توجه به ملاك عدم توانايى عضـله براى ايجاد نيرويى معادل •＾درصــد حداكثر قدرت خروجى لازم با محاسبه اختلاف بين دو نمودار در فاز دو دوم و تقسيم آن بر مقدار كل تحر يك الكتر يكى صورت پذيرفته است و با رسيدن به اين مقدار مىتوان حد بحرانى خسـتگى عضله را ا اعلام نمود．نوع ديگرى از حد بحرانى خستگى كه باعث ايجاد خطر هنگام استفاده
 مشــاهده شــد كه آتروفى بالاترى نســبت به ميانگَين افراد جامعه آمارى داشتند．ميزان بالاى انقباض باقىمانده در اين بيماران نهايتاً باعث قفل شــدن عضــله مىشـود، بدين معنى كه دامنه حر كات بـات به ميزان • 1 درصد به حالت اوليه تنزل مى يابد． در مقايسه بين پاسخ مردان و زنان تفاوت خاصى مشاهده نشد

 زودتر مشــاهده مىشـــود، اعم از ديرتر رســيدن به حد مد ماكســيممم قدرت، حد انقباض باقى ماده بالاتر و غيره． براى آزمودن ميزان اختلاف دادهها ميان مردان، زنان و شخص داراى آتروفى از T Test بهره برده شـــده اســت كه در جد انداول زير مقدار اين تفاوتها ذكر شـده اسـت، البته نتايج دقيقتر وابسته به انجام آزمايش بر روى تعداد بيشــترى از افراد مى الشاشـــــد كه بنا بها به شرايط آزمايشات در اين پ夫وهش امكان آن فراهم انش نشد و اميد است در آيندهى نزديكى به آن پرداخته شود．مقايسه اين نتايج در جداول او r ق قابل

و در זا 1 نفر از 19 نفر مورد آزمايش كاهش قدرت در كمتر از
ro ro
 است．دليل اين مسافت كم و رسيدن به حد بحرانى خستگى زودهنگًام عضله اين افراد آتروفى قابلتوجهى است كه پس از ای دیار شُن به عارضه پارارايلزيا و عدم ارتباط مغز با اين عضلات برايشان به وجود آمده است（• ）．لازم به توضيح است كه پس از سه بار تكرار اين آزمايش براى افراد تمامى آنها ركورد قبلى تعداد سيكل تا
 مرد و يكى نفر زن آزمايش را بدون رسيدن به حد بحرانى خستى انى

يـافتههـا

هدف اين پ夫وهش يافتن روشى براى تعيين زمان رسيدن به حد بحرانى خستگى در عضلات افراد بيمار است و حد بحرانى خستگى براى عضله چهارسر رسيدن قدرت خروجى اين عضله به • 1 در در قرار دادهشده است．با انطباق نمودارهاى تحريكات الكتريكى اعمال شده به بيماران و نمودار الكترومايوگرام اصلاحشده كه در شـر شكل ا آورده شدهاند نكات ذيل به دست مىآيد： ا．شيب متفاوت دو نمودار در فاز اول تحريك（افزايش ولتاز

از • تا حداكثر ولتاز موردنياز شخص）
r．اختلافزمان رسيدن عضله به حد تحريك ماكسيمم بازمان رسيدن تحريكات الكتريكى اعمالشده r．
ولتاز موردنياز شخص تا صفر)
f．f．مقدار انقباض مانده عضله پس از قطع تحريك عضله در ذيل به تشريح هر يك از موارد ذكرشده در بالا پرداختهشده

مورد ا：طبق مشاهدات انجامشده در سيكلهاى ابتدايى تحريك عضله چهارسر، عضله ابتدا با اختلاف شيب بالاترى شروع به فعاليت مىكند اما باكذشت ه－Q سيكل اين اختلاف به حداقل خود رسيده و در زمان نزديك شدن به حد بحرانى خستگى عضله دوباره اين اختلاف شيب شروع مىشود．اين رفتار در تمامى موارد زير تكرار شده است بدين معنى كه ابتدا بايد تعدادى سيكل از تحريك بگَذرد تا بر اينرسى عدم فعاليت عضله در مدتزمان طولانيانى فائق آمده وندي

سپس رفتار نزديكتر به حالت طبيعى را از خود بروز دهد． مورد ז：اين اختلافزمان با استفاده از نمودار بهسادگى قابل｜ندازهگيرى بوده و بهعنوان يكى از مـمهترين ملاكها انتخابشده

 به بعد) (به ترتيب از راست به چپ: مرد داراى آتروفى، زنان، مردان)
جدول (1): بررسى تفاوت ميان پاسخ عضلات مردان سالمو زنان

	سيكلهاى ابتدايى		سككلهاى هشتم به بعد		سيكل آخر	
	متغير ول	متنير دوم	متنير ولو	متنير دوم	متغير اول	متغير دوم
تعداد مشاهدات	ros	T1	r49	1Ar	149	109
ميانكين	1TEMTE94991	99199909	$189 / 8 . \cdot r$	$11 \% / 11 \mathrm{~V}$		111/9ar-01
ميانكّين اختلاف فرضى	-		.		.	
واريانس	rions. frat	490.1499	$\Delta \Delta v \cdot \pi \cdot 1$	rıar/gal	ryr./4190.9	ratmental
t Stat	r/vagarayy		airnolvi		r/ג91098Tay	
df	490		frt		rf.	
t Critical 1-tail	1/99N1FVItN		$1194 n 994$		1/grapyygit	
$\mathrm{P}(\mathrm{T}<=$) $)$ 1-tail	$8.19839 \mathrm{e}-05$		$6.02 \mathrm{e}-08$		$5.99264 \mathrm{e}-05$	
t Critical 2-tail	1/998.V1941		1/99001^		1/999990990	
$\mathrm{P}(\mathrm{T}<=\mathrm{t}) 2$-tail	-....19999^		$1.2 \mathrm{e}-07$./...\|198ar	

جدول（Y）：بر رسى تفاوت ميان پاسخ عضلات مردان باعضلات سالم و ّ مرد دارای آتروفى

	سيكلهاى ابتدايى		سيكلهاى هشتم به بعد		سيكل آخر	
	متغير اول	متغير دوم	متغير اول	متغير دوم	متغير اول	متغير دوم
تعداد مشاهدات	ras	IVV	44q	149	118	18.
ميانگين	ITH／THED	9Y／9rar	$149 / 6 \cdots r$	1ry／qvis	144／9．ra	11N／1への
ميانگين اختلاف فرضى	－		－		－	
واريانس	VIDN／9．0	90ra／alv	$\Delta \Delta V \cdot / T \cdot 1$	DIrv／Irv	rVr．／fiv	rvag／ved
t Stat	r／＾1911f		1／9r91rb		r／gnvarv	
df	ヶ＾я		Mrr		may	
t Critical 1－tail	I／a4nva		1／9494		1／849790	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ 1－tail	5.92 e－05		－／．rypar		$\cdot / \cdot 6 \mathrm{rrl}$	
t Critical 2－tail	1／998．11		1／99Vr09		1／9991NF	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ 2－tail	$\cdots \cdot 111$		． 1.049981		\cdots－VAFI	

روى يكى صندلى نشسته و از آنها خواستهشده تا مفصل زانو را در زاويه • 9 درجه در حالت فلكشن نگَهدارند و در چههار حالت قدرتى

 دادهها بهدستآمده است و مزيت آن قابليت شخصىسازى براى هر بيمار است اما نحوه انجام آزمايش تنها روى يك حالت（نگَهداشتن زانو در حالت •צدرجه）بوده اسـت．با توجه به اينكه هر عضــهـه در كـل بـازه حركتى خود حــداكثر قدرتهاى متفاوتى را از خود بروز مىدهد نتايج اين تحقيق بر روى افرادى كه مانند شــرايط تحقيق پيش رو در حال تمرينات ورزشـى انقباضــى ايزومتريكى هســتـند بهدقت مقاله قابل ارجاع اسـتت．در مقاله اينوكا（Y）برعـا برعكس مقاله
 تقسيمبندى ميزان خستگى بر اساس عضلات اصلى در گير در عمل صـورت پذيرفته است، در آزمايشات انجامشده اندام فوقانى شخص بيشــتر در گير بوده و همحنـين قيود حر كتى توســـط گيرهمايى بر عضـلات شخص اعمال شد．همحنّين مشاهدهشده است كه افراد با

${ }^{3}$ Fmed

بحث و نتيجهكيرى
جمعيت بيمارانى كه از ضايعه نخاعى در دنيا رنج مىبرند در حدود
 بيماران درصـورتى كه سطح A يا B ضايعه نخاعى（طبق استاندارد جهانى تقســيمبندى آســـيبهاى نخاعى）را دارا باشــــــــند توانايى ايســتـادن، راه رفتن و انجـام هر گونه حركت مختار انه را را در اندام
 سيستم تحريك الكتر يكى كاربردى＇موجود كه در آمر يكا پار ااستپ
 عدم داشـتن آتروفى شـديد و ســالم بودن عضــلات و اعصاب اندام انـدام تحتانى توانسـتهاند در زمان اسـتفاده از آنها راه بروند．در كَذشته بدون توجه به رخ دادن پديده حد بحرانى خســـتـتى در عضـــــلات شخص، بيماران از دستگاه پارااستپ استفاده نمودهاند كه اين عمل باعث كاهش ايمنى در مســافتهاى طولانى و افزايش خطر افتادن ناگْهانى آنها شـده است．هدف اين چزوهش تشخيص زمان نزديك شــدن به حد بحرانى خسـتگیى بوده اســت و جمعبندى يافتهها و نتايج به شرح ذيل است．

${ }^{1}$ Functional Eelctrical Stimulation ${ }^{2}$ muscular dystrophy

تنفس منظمم و عميق نمايند درنتيجه بهطور ميانگين هر شـــــص توانسـت $\mid 1$ درصد نتايج خود در آزمايش دوم را بهبود ببخشد. در ابتـداى كار نتايج به ســـمت مطلوب و نزديكتر شــــدن به نمودار تحريك پيش رفت كه نشـاندهنده افزايش تعداد واحدهاى موتورr در حال استفاده در هر عضله است.
با اسـتفاده از اين سـيســتم تشـخيص حد بحرانى خسـتگیى، مىتوان با ايمنى بيشــترى اين كار را انجام داد و روند آموزشـى را سـرعت بخشـيد تا بتوان هشــدارى براى كاربر ارســال نمود كه در
 وى در قدمهاى بعدى به همم نخورد. همچچنين مىتوان از نتايج اين پ夫وهش براى اشـخاصـى كه بهتاز گى از اين دسـتگگاههاى باز توانى استفاده مى كنند بهره بره؛ بدينصورت كه مدتزمانى كه مىتوانند بدون رخ دادن حد بحرانى خســتگى در عضــلات خود از دســتگاه استفاده كنند تعيين شود.
در اجراى اين مطالعه محدوديتهايى وجود داشت، بهتر است در پزوهششهـاى آتى تعـداد بيمـاران موردبر رســـى افزايش يـابــد، همچنیين بررسى مدتزمان بروز خستگى در بيماران پيش و پس از

انجام دور ههاى فيز يوتراپی مىتواند موضوع تحقيقات آينده باشد. با توجه به تحقيقات و آزمايشــات صــورت پ夫وهش تعيين و ارســـال هشـــدار موفقيتآميز و بالموقع در زمان نزديک شـدن به حد بحرانى خسـتگى عضله چهارسر را نبود. براى تشـخيص بلموقع حد بحرانى خسـتغگى در اين عضله و يا هر عضله ديگرى، دو معيار شــناســـايى شـــد كه به شـــرح ذيل بودند ا. اختلافزمان رسيدن عضله به حد تحريك ماكسيمم بازمان رسيدن تحريكات الكتر يكى اعمالشده و r. مقدار انقباض مانده عضله پس از قطع تحريک عضله
نتايج آزمايشها تشخيص حد بحرانى خستگى عضلات بيماران پارایلزيک پس از رسيدن MVIC عضله چهارسر آنها به • م درصد
 KYY متر طى مســـافت بوده اســت و پس از تكرار آزمايش تمامى افراد طى مدتزمان بيشــترى (بهطور متوســط | ا درصــد ديرتر) دچپار حد بحرانى خستگى عضلانى شدهاند. بـه دليـل نزديكى ســـبــ دادههاى جمعآورىشـــــده در اين آزمايشــات پيشـنـهاد مىشــود در ادامه اين تحقيق به مدل نمودن
آنها در شبكههاى عصبى و فازى پرداخته شود.

تشـكر و قدردانى

${ }^{2}$ Motor units

ســن بالاتر داراى زمان خســتـگى ديرترى نســــــت به افراد جوان بوداند، كه نحوه آن در نمودار r آور ده شده است

نمودار (Y): نمودار نشانگر زمان خستگى عضلات براى افراد جوان / با سن بالاتر (IT)

در آزمايشات اين پثوهش قيودى براى حركت شخص قرار داده نشــده است مگر قيودى كه تحر يكات الكتر يكى ذوزنقهاى شكل بر بر روى عضله چهارسر داشتهاند. همچنين زمان رسيدن به حد بحرانى خسـتگى بر اسـاس سـن قابلتعيين نبوده و نزديكتر به اين فرض اسـت افرادى كه مدتزمان كمترى از بروز عارضه پاراليلزيا در آنها حَشــته اسـت يا بهطور مداوم در حال فيزيوترايیى بودهاند از بقيه افراد ديرتر دچار خستگى مىشوند.
 عضلات افرادى است كه حر كات ورزشى و انواع مختلفى از فشار بر

 عضله تأكيد داشته است؛ اما نحوه آزمايش وى برخ آلاف اين پثروهش
 مشـتر ك اين چزوهش با مقاله گرين در فشـا عضلات است (Y) كه جزو نكات مدنظر اين پزوهش نيز هست زيرا باوجود آتروفى بالا در عضلات بيماران حتى سادهتر يان كار كار ها ما مانند راه رفتن در ابتداى آموزش اين افراد باعث بروز سريعتر حد بحرانى خستگى در عضلاتشان مىشود. در تعريف خستگى در مقاله كوك (٪ه) به اين نكته اشارهشده كه كاهش ميزان اكسيثن موجود در خون در رخ دادن سرين دريع

 خسـتگى طى نمودند اما در آزمايش سـوم از آنها خا خواسته شد كه قبل از شروع آزمايش و در حين آن مقدارى آب نوشيده و شروع به

[^3]ايـن پـروهــش داراى تـأيـيــديـه اخــلاقـى بــه شـــــــاره
IR.SBMU.RETECH.REC. 1398.242

تـعارض منـافع
هيجگگونه تعارض منافع توسط نويسندگًان بيان نشده است.

References:

1.Kumar R, Lim J, Mekary RA, Rattani A, Dewan MC, Sharif SY, et al. Traumatic Spinal Injury: Global Epidemiology and Worldwide Volume. World Neurosurg 2018; 113: 345-63.
2.Varma A, Das A, Wallace G, Barry J, Vertegel A, Ray S, et al. Spinal Cord Injury: A Review of Current Therapy, Future Treatments, and Basic Science Frontiers. Neurochem Res 2013; 38(5): 895-905.
3. Johnson M. Transcutaneous electrical nerve stimulation: review of effectiveness. Nurs Stand 2014; 28)40(: 44-53.
4.Kralj A, Bajd T, Turk R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation. Clin Orthop Relat Res 1988; (233): 34-43.
5. Nas K. Rehabilitation of spinal cord injuries. World J Orthop 2015; 6(1): 8.
6. Suehiro K, Morikage N, Murakami M, Yamashita O, Ueda K, Samura M, et al. A Study of Leg Edema in Immobile Patients. Circulation 2014; 78(7): 1733-9.
7. Grigorian A, Sugimoto M, Joe V, Schubl S, Lekawa M, Dolich M, et al. Pressure Ulcer in Trauma Patients: A Higher Spinal Cord Injury Level Leads to Higher Risk. J Am Coll Clin Wound Spec 2017; 9(1-3): 24 31.e1.
8. Mackiewicz-Milewska M, Jung S, Kroszczyński A, Mackiewicz-Nartowicz H, Serafin Z, CisowskaAdamiak M, et al. Deep venous thrombosis in patients with chronic spinal cord injury. J Spinal Cord Med 2016; 39(4): 400-4.
9. Do J, Kim D, Sung D. Incidence of Deep Vein Thrombosis after Spinal Cord Injury in Korean

$$
\begin{aligned}
& \text { از دانشـعاه علوم پزشـكى شـهيد بهشـتـى، مركز رشد دانشگاه } \\
& \text { صنعتى خواجهنصيرالدين طوسى براى فراهم آوردن شرايط ساخت }
\end{aligned}
$$

$$
\begin{aligned}
& \text { انجمن ضايعه نخاعى تهران براى معرفى بيماران به اين طرح كمال } \\
& \text { سپپاسگَاری را داريֵم. }
\end{aligned}
$$

Patients at Acute Rehabilitation Unit. J Korean Med Sci 2013; 28(9): 1382.
10. Alabed S, Belci M, Van Middendorp J, Al Halabi A,

Meagher T. Thromboembolism in the Sub-Acute Phase of Spinal Cord Injury: A Systematic Review of the Literature. Asian Spine Journal 2016; 10(5) 972.
11. Soleyman-Jahi S, Yousefian A, Maheronnaghsh R, Shokraneh F, Zadegan S, Soltani A, et al. Evidencebased prevention and treatment of osteoporosis after spinal cord injury: a systematic review. Eur Spine J 2018; 27(8): 1798-1814
12. Khazaeipour Z, Taheri-Otaghsara S, Naghdi M Depression Following Spinal Cord Injury: Its Relationship to Demographic and Socioeconomic Indicators. Top Spinal Cord Inj Rehabil 2015; 21(2) 149-55.
13. Berlowitz D, Wadsworth B, Ross J. Respiratory problems and management in people with spinal cord injury. Breathe 2016; 12(4): 328-40.
14. Dearwater S, Laporte R, Cauley J, Brenes, G. Assessment of physical activity in inactive populations. Med Sci Sports Exerc 1985; 17(6) 651-55
15. Koyuncu E, Nakipoğlu Yüzer G, Yenigün D, Özgirgin N . The analysis of serum lipid levels in patients with spinal cord injury. J Spinal Cord Med 2017; 40(5) 567-572.
16. Graupe D, Bazo HA. Thoracic Level Complete Paraplegia;Walking Performance, Training and Medical Benefits with the PARASTEP FES System Int J Phys Med Rehabil 2015; 3(298): 10-4172.
17. Nekookar V, Erfanian A. Optimization of Stimulation Patterns in Paraplegic Walker-Assisted Walking
using Functional Electrical Stimulation. Iranian Journal of Biomedical Engineering 2011; (4)4: 32736.
8. Graupe D, Kohn K. Functional Neuromuscular Stimulator for Short-Distance Ambulation by Certain Thoracic Level Spinal-Cord-Injured Paraplegics. Surg Neurol 1998; 50(3): 202-7.
19.Klose K, Jacobs P, Broton J, Guest R, NeedhamShropshire B, Lebwohl N, et al. Evaluation of a training program for persons with SCI paraplegia using the Parastep®1 ambulation system: Part 1. Ambulation performance and anthropometric measures. Arch Phys Med Rehabil 1997, 78(8); 789-93.
20. Oliveira A, Correa F, Valim M, Oliviera C, Correa J. Determination of muscle fatigue index for strength training in patients with Duchenne dystrophy. Fisioterapia em Movimento 2010; 23(3): 351-60.
21. Wang J, Xiang Z, Gammad G, Thakor N, Yen S, Lee C. Development of flexible multi-channel muscle
interfaces with advanced sensing function. Sensors and Actuators A: Physical 2016; 249: 269-75.
22.Whittle M, Levine D, Richards J. Gait Analysis. 5th ed. Elsevier Health Sciences; 2012. P.40-7.
23. Enoka R, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. Journal of Phisiology 2008; 586(3): 11-23.
24. Del Coso J, González-Millán C, Salinero JJ, AbiánVicén J, Soriano L, Garde S, et al. Muscle Damage and Its Relationship with Muscle Fatigue During a Half-Iron Triathlon. PLoS One 2012; 7(8): e43280.
25. Cook D, O'Connor P, Lange G, Steffener J. Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndromes patients and controls. Neuroimage 2007; 36: 108-22.
26.Green H. Mechanisms of muscle fatigue in intense exercise. J Sports Sci 1997; 15(3): 247-56.

THE EFFECT OF FATIGUE OCCURRENCE IN QUADRICEPS MUSCLE OF SPINAL CORD INJURY PATIENTS WHO USE FUNCTIONAL NEURAL ELECTRICAL STIMULATION REHABILITATION DEVICES: AN OBSERVATIONAL STUDY

Mohamad Reza Roohi ${ }^{* 1}$, Sam Allahyari ${ }^{2}$

Received: 29 March, 2020; Accepted: 28 June, 2020

Abstract

Background \& Aims: In this study, the critical limit of muscle fatigue was evaluated for patients who use Functional Neural Electrical Stimulation (FNES) rehabilitation devices for walking. These patients do not have voluntary muscle control and have to be artificially stimulated to walk and their fatigue is not recognized in time because of the lack of sensation in their muscles. With the help of this system, it is done more safely and its usage can speed up the training process. Materials \& Methods: In this study, the time of approaching the critical point of fatigue for Quadriceps muscles in patients with spinal cord injury was investigated. Patients having the injury level between T4-T12 were randomly selected. A system was designed to stimulate the Quadriceps muscle and identify the results before reaching critical fatigue. Results: By adjusting the electrical stimulation diagrams and the modified electromyogram diagram in the early cycles of quadriceps muscle stimulation, the muscle initially started with a higher slope, but after 5-8 cycles, this difference reached its minimum. This slope difference begins again when approaching the fatigue phase. The voltage required to stimulate the female patients was 180 volts and the male patients needed 225 volts to raise their shins by 60 degrees. Conclusion: The results of the experiments after the MVIC of quadriceps reached 80% averaged over 290 cycles equivalent to 232 m . There was also a significant relationship between regular use of the device and delay in the onset of muscle fatigue ($\mathrm{p}<0.001$). After repeated testing, all subjects experienced fatigue after a longer period (11% on average).

Keywords: Transcutaneous Electrical Stimulation, Spinal Cord Injury, Dependent Ambulation, Fatigue
Address: Ring 19, No. 22, Shaghaghi St., Afshari St., Banihashem Sq., Tehran, Iran
Tel: +989128369579
Email: Mre.rouhi@gmail.com
SOURCE: STUD MED SCI 2020: 31(5): 940 ISSN: 2717-008X

[^4]
[^0]: ${ }^{3}$ Spasticity
 ${ }^{4}$ Edema
 ${ }^{5}$ decubitus ulcer
 ${ }^{6}$ deep vein thrombosis
 ${ }^{7}$ osteoporosis
 ${ }^{8}$ restrictive respiratory disorders

[^1]: ${ }^{3}$ maximal voluntary isometric contraction

[^2]: ${ }^{1}$ cardio-pulmonary fitness degeneration
 ${ }^{2}$ Functional Eelctrical Stimulation

[^3]: ${ }^{1}$ Triathelon

[^4]: ${ }^{1}$ Department of Biomechanical Medical Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran (Corresponding Author)
 ${ }^{2}$ M.D, Shahid Beheshti Medical University

