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Abstract

Over the past decade, therapeutic messenger RNAs (mRNAs) have emerged as a highly promising new class of
drugs for protein replacement therapies. Due to the recent developments, the incorporation of modified
nucleotides in synthetic mRNAs can lead to maximizing protein expression and reducing adverse immunogenicity.
Despite these stunning improvements, mRNA therapy is limited by the need for the development of safe and
efficient carriers to protect the mRNA integrity for in vivo applications. Recently, leading candidates for in vivo drug
delivery vehicles are cell-derived exosomes, which have fewer immunogenic responses. In the current study, the
key hurdles facing mRNA-based therapeutics, with an emphasis on recent strategies to overcoming its
immunogenicity and instability, were highlighted. Then the immunogenicity and toxicity of exosomes derived from
various cell sources were mentioned in detail. Finally, an overview of the recent strategies in using exosomes for
mRNA delivery in the treatment of multiple diseases was stated.
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Background
Messenger RNA (mRNA), which is an intermediate
molecule to transport genetic codes from DNA to ri-
bosomes for protein expression has been suggested as
a promising tool in novel therapeutic approaches for
the treatment of several diseases and cancers [1, 2].
Exogenously delivered-mRNA has gained enormous
attention due to its ability to encode any types of
therapeutic proteins, including cytosolic, intra-
mitochondrial, transmembrane, and secreted proteins
[3]. In recent years, the potential therapy for various
genetic defects has determined by a single gene, such

as alpha-1 antitrypsin deficiency (AATD) [4], cystic
fibrosis [5], and other monogenic disorders [6], as
well as genetic diseases [7], brain diseases [8], infec-
tious disease [9], cancers [10], etc. mRNA-based gene
therapy is more advantageous, including no need any
nuclear localization, and therefore no risk of genomic
integration compared to classical gene therapy.
Besides, it doesn’t alter the physiological state of the
cell and also is not mutagenic due to its transient ef-
fect [6, 11]. Although naked mRNA hardly enters the
cell, short plasma half-life, susceptible to cleavage by
ribonucleases, and elicitation of innate immunity face
difficulties in entering the cell [12].
Immunogenicity of therapeutic mRNA not only was

improved by the incorporation of modified nucleotides
[11] but also was significantly reduced higher efficiency
combined with enhanced safety by the carrier with min-
imal immunogenicity, protection of mRNA degradation
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by nucleases, ability to pass through the phospholipid
membrane, underlie efficient release from the cargo [10].
Moreover, an appropriate carrier enables repeated
dosing without any cytotoxicity to achieve a sufficiently
high quality of encoded protein, which will improve
therapeutic efficiency [12]. Taken together, choosing the
ideal carrier leads to higher efficacy combined with
enhanced safety and decreased cytotoxicity; likewise,
exosomes emerge the expected features due to the
structural proximity with cellular components [13]. For
the first time, exosomes, as natural carriers of mRNA-
and microRNA-, were discovered in mast cells by Valadi
et al. [14]. Exosomes were also detected as an important
carrier of intracellular signaling in several other cells [15, 16].
Due to the biocompatibility nature of extracellular vesicles
(EVs) with human cells, they successfully cross the cellular
membrane and bypass drug delivery obstacles, includ-
ing RNase degradation, endosomal accumulation,
phagocytosis, multidrug resistance, cytotoxicity, and
immunogenicity [17, 18].
In this review, we endeavor to summarize mRNA’s

potential in the induction of an unwanted immune
response. Besides, the current knowledge in the modifi-
cation of mRNA to overcome its immunogenicity and
then, the immunogenicity and toxicity profile of
exosomes derived from various cell origins also be
provided. Finally, we discuss the feasibility of engineer-
ing exosomes methods to utilize them as RNA drug
delivery carriers.

Hurdles of mRNA-based therapy
Even though mRNA was discovered in 1961 [19] for the
first time, Malone et al. have displayed liposomes as
mRNA carriers in 1989 [20]. In 1990, Wolff and col-
leagues described the idea to use using therapeutic
mRNAs for producing specific proteins instead of classic
gene therapy. However, due to the instability nature of
mRNA molecules, they have not been considered thera-
peutic agents during that time. Besides the instability,
immunogenicity was the other problem related to
in vitro-transcribed mRNA (IVT) molecules [21].

Immunogenicity of mRNA
One of the most critical hurdles to employ mRNAs as
therapeutic agents is IVT mRNA’s immunogenicity [22].
Pattern recognition receptors (PRRs) are defined as spe-
cific structures that identify pathogen-associated mole-
cules in infection [23]. Many cells recognize the single-
strand RNA (SSR) and double-strand RNA (DSR) struc-
tures by PRRs, such as toll-like receptor (TLR) 3, 7 and,
8, which respond to SSRs and DSRs and induce the gene
expression of pro-inflammatory cytokines (PICs) and
type I interferons (IFNs) [24, 25]. The systemic delivery
of unpurified IVT mRNAs can stimulate immune

response and consequently induce the expression of
(PICs) and (IFNs) [22].
In addition to TLRs, IVT mRNA can be identified by ret-

inoic acid-inducible gene I (RIG-I) -like receptors (RLRs),
which are cytosolic RNA helicases [26]. These cytosolic
sensors, are primarily essential in innate immune and non-
immune (epithelial) cells, such as RIG- I), melanoma
differentiation-associated protein 5 (MDA5), and laboratory
of genetics and physiology 2 (LGP2) [27–29]. Recognition
of mRNA structures by TLR and RLR sensors, induces acti-
vation of transcription factors (TFs), including nuclear fac-
tor kappa B (NF-κB), IFN regulatory factor 3 (IRF3), and
IRF7. Following activation of mentioned TFs, they bind to
the gene promoter of IFN and lead to the induction of the
expression of IFNs, in particular, IFN-α and IFN-β [30].
Moreover, the expression of PICs such as IL-6, IL-12, and
tumor necrosis factor-alpha (TNF-α) is induced by NF-κB
[26]. The stimulator of interferon genes (STING) is recently
identified as an intracellular DNA sensor. Furthermore,
STING has also been found to interact with RIG-I and the
downstream adapter mitochondrial antiviral signaling pro-
tein (MAVS). As STING deletion results in impairment of
RIG-I-mediated innate signaling, STING may play a role in
anti-RNA virus defense [31]. Studies have shown that
STING has not participated in dsRNA (poly IC) signaling,
is mostly regulated by RLRs [32]. Nonetheless, loss of
STING function renders mice highly susceptible to RNA
virus infections, such as vesicular stomatitis virus (VSV),
due to a decrease in type I IFN production in STING
knockout cells infected with VSV, suggesting that STING
may play a crucial role in maintaining homeostasis of the
immune system [32, 33]. To overcome the stimulation of
immune responses due to the presence of therapeutic
mRNA, there are some strategies including using the syn-
thetic modified mRNA [12]. The following studies explain
whether nucleotide modification on mRNA could result in
a reduction in its immunogenicity.

Synthesis of low immunogenicity mRNA with modified
nucleotides
About a decade ago, innovative research by Karikó and
Weissman et al. displayed that in vitro synthesis of
mRNA molecule with the incorporation of modified
nucleotides into the synthesized mRNA, results in more
reduction of TLR-mediated immunogenicity and
improves its translation and half-life [34]. To find more
about nucleotide modification effect on immune
response, several studies used different exogenous syn-
thetic mRNA with variously modified nucleotides to
investigate immune recognition and response by cells
and organisms [35].
Durbin et al. used RIG-I-activating RNA ligand, the

106-nucleotide (nt) polyU/UC sequence derived from
the 3′untranslated region (UTR) of the hepatitis C virus
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for discovering the immunosuppressive feature of differ-
ent nucleotide modifications. Their results revealed that
m6A, Ψ, m1Ψ, 5mC, 5-hydroxymethylcytidine (5hmC),
5-methoxycytidine (5moC), and 2′ fluorodeoxyribose
modifications (2′ fluoro-deoxyuridine [2FdU] and 2′
fluoro-deoxycytidine [2FdC]) individually suppress RIG-I
responses to the polyU/UC RNA ligand. Therefore,
they displayed that RNAs containing modified nucleo-
tides affect the initial stages of the RIG-I signaling
pathway [36].
In 2015, Andries et al. found that the incorporation of

the m1Ψ modification in combination with m5C on the
mRNA leads to decreased cell cytotoxicity and innate
immunogenicity because of the high potential of the
modified mRNA to evade TLR3 activation and down-
stream innate immune signaling [37]. Moreover, Michel
et al. developed a novel mRNA-based therapeutic
method to resolve the single-gene defects, alpha-1-
antitrypsin deficiency (AATD). They successfully deliv-
ered modified alpha-1-antitrypsin (AAT) encoding
mRNA via lipofectamine agent into the different cell
types. This study showed that delivery of dephosphory-
lated and modified mRNA induces just trivial expression
of IFN-α, IFN-β, and TNF-α compared with the other
types of modifications [4]. Moreover, according to the
findings of Kormann et al., the combination of chemical
modifications, 2-thiouridine and 5-methylcytosine,
reduce the recognition of the modified mRNA via pat-
tern recognition receptors such as TLR 3, 7, and 8 and
cytosolic RIG-I in human peripheral blood mononuclear
cells, lead to decreased immunogenicity with more
stability in mice [38].
In contrast, Kauffman et al. reported that pseudourid-

ine modification to mRNA had no effect on reduction of
the serum levels of G-CSF, MCP-1, RANTES, and MIG
as well as had no significant effect on mRNA immuno-
genicity in comparison to systematically delivered
unmodified mRNA via liver-targeting lipid nanoparticles
[39]. Consistent with this finding, Thess and colleagues
reported that sequence-engineered mRNAs encoding
erythropoietin (EPO) by incorporating the most GC-rich
codon and made with unmodified nucleotides are not
immunogenic, as evaluated by measuring inflammatory
cytokines [1]. Additionally, a synthetic cap analog, such
as the anti-reverse cap analogs (ARCA), can be used to
further enhance translational efficiency and stability of
mRNA and also reduce the immune activation [40]. In
ARCA, the 3′-OH of the m7G moiety is replaced with a
3′-O-methyl group, which allows the cap analog incorp-
oration in the proper orientation at the 5′-end during
the IVT [41, 42]. Furthermore, circular RNAs (cir-
cRNAs) are a new class of RNAs with a covalently circu-
lar structure without a 3′ poly-A tail or a 5′ cap.
Recently, they have attracted rising interest because of

their prevalence and variety of possible biological roles
[43]. Wesselhoeft et al. have shown that unmodified
exogenous circRNA does not stimulate cellular RNA
sensors and thereby evade an immune response in RIG-I
and TLR competent cells and mice. They reported that
unmodified circRNA has less immunogenicity than
unmodified linear mRNA in vitro because of evasion of
TLR sensing [44].

Immunogenicity and toxicity of exosomes
Despite recent advances in the development of nanoma-
terials that can carry drugs for cancer therapy, achieving
an ideal drug delivery system while avoiding unaccept-
able toxicity, immunogenicity, and innumerable other
side effects remains a crucial challenge. To overcome
these obstacles, exosomes have been proposed as highly
efficient to serve as a drug delivery device [45, 46]. Exo-
somes are nano-sized EVs (30–150 nm in diameter)
which formed and released by almost all mammalian
cells. Intraluminal vesicles (ILV) are formed by introver-
sion of endosomal origin and endosomes, which are
packed with these ILVs are entitled multivesicular endo-
somes (MVE) [47, 48]. The origination from the multi-
vesicular body (MVB) and release into the extracellular
matrix upon the fusion of MVB with the plasma mem-
brane was depicted in Fig. 1.
Due to the inherent nanoscale dimensions and nature’s

cellular product, these vehicles can escape phagocytic
degradation, so they are naturally stable. They have in-
trinsic targeting properties based on their composition.
Moreover, studies have shown that exosomes can cross
the blood-brain barrier (BBB) [46, 49]. The biogenesis of
EVs is an endogenous process that allows for two main
strategies to load the EVs including pre-treatment of
parental cells with agents of interest and then isolation
of drug-loaded EVs from the conditioned medium, and
actively or passively loading of isolated EVs with agents
of interest [50].
To explore the characteristics and use of exosomes as

a drug delivery system, a sufficient quantity of exosomes
must be effectively isolated from different sources and
must be free of cellular and molecular contaminations.
Exosomes’ surface composition and cargo need to be
carefully characterized to introduce the exosomes’ cargo
repertoire and functions [51]. The therapeutic potential
of exosomes depends on the ability of large-scale EVs
production [52]. Despite the significant advances in EV
isolation methods, currently, there is no distinct efficient
technique for isolation of high purity exosomes due to
the high biological sample complexity, EV heterogeneity,
and intersection of the biological and physicochemical
properties [53]. Existing exosome isolation techniques,
obtain low exosomal yields and their large scale produc-
tion for clinical researches and post-drug approval is
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expensive [54]. Through their formation, various cellular
ingredients are wrapped in exosomes, which could
potentially cause adverse side-effects in target cells such
as toxicity and unwanted immune response. Future de-
velopment of exosomes as therapeutics and drug deliv-
ery vehicles requires an in-depth understanding of their
general safety and potential risks [55, 56]. The following
studies represent the toxicity and immunogenicity pro-
file of exosomes shed from various cell origins used as
drug delivery vehicles.

Challenges in exosome production
Despite exosome keep away from phagocytosis or deg-
radation by macrophages due to inherent small size and
nature’s cellular product, prediction of long-term safety
and therapeutic effect accounts for the ambiguous un-
derstanding of exosome nature and role complicated
cutouts using of them. Furthermore, large-scale produc-
tion for clinical trials shows the high cost and low quan-
tity [46, 54, 57]. Sufficient translation of mRNA into the
cytosol through vehicle was hindered due to its large
molecular size, intrinsic instability, degradation by nucle-
ases, and activation of the immune system [58].
Although chemical modification has been partially
untangled some of these problems, a major obstacle is
considered in the intracellular delivery of mRNA, which
arising from the stabilization of mRNA stability under
physiological exposure. Exosomes represent prodigious
features including excellent permeation into physio-
logical barriers, appropriate pharmacokinetic (PK), and
tolerable immunological responses as an RNA carrier in
comparison with other vehicles. However, exosomes in-
dicate a suitable fitting strategy in small RNA (siRNA
and miRNA) delivery and their yield for mRNA is low
[59]. Recently challenge of inserting and release large
quantities of mRNA in exosomes by enhancing the

encapsulation through biological modification of cell
sources and cellular nanoporation was resolved [18, 60,
61]. Therefore, it is essential to know and resolve the
challenges in exosome production (such as sources, iso-
lation and purification, and loading) for effective mRNA
delivery (See Fig. 2).
The encapsulation efficiency of exosomes is hindered

due to inherently packed with natural contents and short
size range with the same number of encapsulated mRNA
in each EVs [62, 63]. On the other hand, using good
manufacturing practice (GMP) as a standardized manu-
facturing process in clinical trials to validate production
and the therapeutic efficacy of exosomes is essential. In
general, GMP-grade production refers to the type of
cells, culture medium, cultivation system, and dissoci-
ation enzyme. In the following, purification includes a
three-step process; cell debris filtration, concentrating
condition medium (CM), and isolation from the concen-
trated CM. In this regard, understanding, and analysis of
cell cultivation, purification, and quality control (QC) of
exosomes. The main challenge in GMP-grade exosome
production is to achieve appropriate QC. Furthermore,
in the purification and characterization process, the
development of GMP-grade animal-derived exosomes
compared with plant-derived ones due to the less infor-
mation was recommended [64, 65].

Exosome sources

Human embryonic kidney cells-derived exosomes
The human embryonic kidney (HEK) cell line (HEK293T)
has been used EVs donor for a broad range of investiga-
tions, due to their high transfection efficiency, ease of
growth, and capacity for high yield of EVs [66]. Li et al.
pointed out that exosomes, as an ideal drug delivery tool,
require cargo that causes minimal adverse effects and

Fig. 1 Exosome biogenesis: Exosomes are formed by producing MVB and ILV structures following endocytosis and inward budding of the
MVB membrane
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should have targeting ability. Their results indicated that
the 293 T cell-derived exosomes might have the same fea-
tures in common with the different tissues. Their resem-
blances at the membrane level improve exosome
membrane fusion in these tissues. Moreover, they
reported that few disease-related or cancer-related path-
ways were enriched in 293 T cell lines are regarded as
appropriate in vivo drug delivery vehicles [67]. Further-
more, in another study, Rosas et al. showed that THP-1
and U937 monocytic cells, which represent a population
essential in innate and adaptive immunity, internalized
HEK293T-derived exosomes efficiently, and these exo-
somes did not exhibit a cytotoxic effect or alter phagocytic
efficiency on THP-1 and U937 cell lines [56]. Additionally,
a study by Zhu et al. reported that exosomes obtained
from HEK293T cells, exert minimal toxicity and immuno-
genicity based on splenic immune cell composition or cir-
culating cytokine levels in C57BL/6 mice following
repeated dosing in 3 weeks [66]. HEK Expi293F cells also
have desirable characteristics that make them promising
exosome producers for clinical use [55]. A recent study by
Saleh et al. reported the toxic and immunogenic potential
of exosomes using HEK Expi293F cells as exosome
donors. They treated the human hepatic cell line (HepG2)
with Expi293F-derived exosomes to evaluate cell function,
gene expression, and cytokine secretion of exosomes. As
their results showed, no adverse effects were mediated in
HepG2 cells after exosome treatment in 24 h. Moreover,
they evaluated in vivo general toxicity of exosomes on
BALB/c mice and reported minimal toxicity and immuno-
genicity, and pro-inflammatory cytokine response [55].

Bone marrow stem cells-derived exosomes Bone
marrow stem cells (BMSC)-derived exosomes have been

proposed as a promising cell origin for producing
clinical-grade exosomes for cellular therapy [68]. Mendt
et al. generated engineered exosomes that have
therapeutic potential to target oncogenic Kras (iExo-
somes) and they reported that repeated administration
of mice to BMSC-derived iExosomes did not induce any
detectable toxicity or harmful immune reactions in com-
parison to control mice, as evaluated by immune-typing
of tissues, histopathological analyses, and secretion of
PICs [68, 69].

Immature dendritic cell-derived exosomes It has been
shown, immature DCs (imDCs)-derived exosomes could
weakly stimulate naïve T cells, probably due to lack of
immune-stimulatory markers like CD86, CD40, major-
histocompatibility-complex (MHC-I, and II) on their
surface [70]. Based on this observation, Tian et al. have
used mouse imDCs to generate exosomes for (DOX de-
livery to the tumor environment in BALB/c nude mice.
In all, They suggested exosomes as attractive and ideal
candidates for safe and efficient drug delivery for tumor-
targeted therapy [71]. Moreover, Alvarez et al. demon-
strated that imDCs-derived exosomes mediated siRNA
delivery in vivo did not induce immune responses nor
reveal any overt signs of toxicity [72].

Milk-derived exosomes Milk has been proposed as a
viable alternative source of exosomes due to its ease in
scalability, safety, and biocompatibility [73] likewise
Agrawal et al. have used bovine milk-derived exosomes
for oral delivery of paclitaxel (PTX) which was termed
(ExoPAC). As they measured systemic toxicity and im-
munogenicity of exosomes, ExoPAC, and PTX alone,
they did not observe toxicity or any significant effect on

Fig. 2 mRNA-encapsulated exosomes: Exosomes as carriers of mRNA enters the cell via endocytosis and escape from endosomes. Subsequently,
mRNA is released into the cytoplasm and translated into proper peptides or proteins
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the numbers of stem cells or immune cells (T cells, B
cells, and neutrophils) populations by the exosomes or
ExoPAC treatments. Furthermore, the number of T, B,
and natural killer (NK) cells in the spleen did not
change. Moreover, CD4 helper T cells and CD8 cyto-
toxic T cells were not altered by the exosomes or Exo-
PAC treatments [74]. Similarly, in another study,
Munagala et al. indicated that milk-derived exosomes
did not elicit any systemic toxic reactions or adverse im-
mune response during short-term (1–6 h) or long-term
(15 d) exposure in wild type rats; therefore they can act
as a potential carrier for delivery of chemotherapeutic
drugs [73].

Red blood cells-derived exosomes In some cases, red
blood cells (RBCs) have been used for producing exo-
somes for drug delivery. RBC-derived exosomes have
several properties that are more suitable for clinical ap-
plications. Since RBCs are the most abundant cell type
(84% of all cells) in the body and there is easy access to
RBC-derived exosomes, either from maintained blood
units at blood banks or even from the patients’ blood for
allogeneic and autologous transfusion, respectively.
RBCs release large-scale amounts about 1014 of exo-
somes during their maturation. Moreover, RBCs-derived
exosomes are safe, because RBCs lack both nuclear and
mitochondrial DNA, unlike EVs from other cell types.
The successful compatible blood transfusion among
people more develops the feasibility and clinical poten-
tial efficiency of RBC-derived exosomes for drug delivery
[75]. In a study by Usman et al. exosomes were isolated
from group O Rh-negative blood and successfully used
for the delivery of RNA drugs to target a specific onco-
miR gene in leukemia and breast cancer (BC) cells and
they did not observe significant cytotoxicity in vitro or
in vivo [76]. In another investigation, a pH-responsive
superparamagnetic nanoparticles cluster-based strategy
was designed to separate blood transferrin receptor-
positive (TfR+) exosomes. These exosomes were used to
deliver DOX on H22)in vitro(and 4 T1 cells)in vivo(.
The results displayed high bio-safety of blood TfR+ exo-
somes along with the improved delivery of chemothera-
peutic agents to the tumor environment [77].

Exosome isolation and purification
There are different techniques to isolate exosomes and
the choice of the appropriate method depends on the
type of the sample, for example, the source of exosome
and downstream processes such as RNA and protein
content analysis. These methods include ultracentrifuga-
tion, ultrafiltration, size exclusion chromatography
(SEC), precipitation with polymers, and separation by
affinity-based methods [47, 78, 79]. Recently, the devices
based on microfluidic technology indicate promising

advances for isolation and analysis of exosomes [80–82].
Therefore, look at the pros and cons of each method to
find the qualified method of exosome purification is es-
sential. So far, no method has been reported to purify
the exosome that has all the desired features such as
high efficiency and purity, simplicity, and no need for
special and advanced equipment and facilities. There-
fore, exosome purification is still one of the obstacles fa-
cing the application of these nanovesicles as carriers for
biomaterials [83, 84].

Ultracentrifugation and ultrafiltration Ultracentrifuge
(UC) is considered a gold standard and the most com-
mon method for purification of the exosome, but the
possibility of accumulation of vesicle masses due to cen-
trifugal force is not negligible in this technique. Many
factors, including force, rotor type, and solution viscos-
ity, affect the result of exosome precipitation. However,
this method is time-consuming and heavily instrument-
dependent and is not suitable for separating exosomes
from low-volume specimens such as clinical specimens
and may be associated with some contaminant particles
such as proteins and other vesicles. Moreover, the exo-
some structure may be lost due to a process called splat
factor at high speed [78]. A density gradient ultracentri-
fuge (UC-DG) is sometimes used to purify and separate
low-density exosomes from other vesicles and particles
due to the density of exosomes, which is 1.13–1.19
gmL− 1. In the method that is based on the sucrose dens-
ity gradient, the contaminants of proteins, lipoprotein,
RNA, and large vesicles are removed, although it still in-
dicates a time-consuming challenge [78, 85]. In ultrafil-
tration (UF), the exosomes are separated by size using
filtration membranes, and the purification is based on
the size and membrane molecular weight cut off. The
use of filtration membranes does not allow vesicles and
particles larger than the exosomes to pass through the
filter, and the passage of the solution is accompanied by
the removal of large vesicles. Although special materials
are used in filtration membranes to reduce adhesion,
some exosomes are still attached to the membrane and
removed from subsequent analyzes. Following using the
filters several times, their pores close and the pressure of
passing solution affects the shape and integrity of the
exosomes [79].

Size exclusion chromatography In size exclusion chro-
matography (SEC), the separation is based on the size of
isolated exosome particles due to different size distribu-
tion of microvesicles, proteins, and other particles and
components in the biological materials. Despite SEC in-
dicates a high degree of purity, the method efficiency is
less than other methods. Although it does not take
much time to separate each fraction, subsequent
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analyzes of each fraction to determine its exosome con-
tent are very time-consuming. Besides, there is a possi-
bility of contamination in the column that should be
considered [86, 87].

Polymer-based precipitation The technology of pre-
cipitation of exosomes by polymers was introduced by
System Biosciences (SBI) [88]. Although this technique
is employed by commercial kits for exosome purifica-
tion, it has been used for more than 50 years to isolate
viruses from other macromolecules. Hebert was the first
one who successfully concentrated plant viruses by poly-
ethylene glycol (PEG) and sodium salt [89]. Other stud-
ies have also been reported on the isolation of viruses
and bacteria using the same protocol [90, 91]. In this
method, the exosomes, 60–150 nm in size, are trapped
in a polymer network and precipitated with low-speed
centrifuges; accordingly, kits such as Exo-Quick were
launched [86]. However, the use of PEG or precipitation
with polymers is very simple and does not require a spe-
cial device, does not affect the particle properties and all
steps of the purification process are done at physio-
logical pH and in the absence of organic matter. In viral
isolation studies with this method, the efficiency has
been much more than ultracentrifugation but the draw-
back of this method is contamination with protein and
non-vesicular components, which might be also precipi-
tated along exosome. For this reason, several steps must
be taken before and after separation, for example, the
use of a 25 G-Sephadex column [47].

Immunomagnetic-based isolation This method em-
ploys magnetic beads, which are coated with streptavidin
and therefore bound to biotinylated antibodies. These
antibodies detect biomarkers or antigens specific to exo-
somes, including CD63, CD9, and CD81, and thus separ-
ate only the exosome among other biomaterials. CD9
markers, for example, only detect and isolate serum exo-
somes. This method is used for special studies that re-
quire the separation of a special group of exosomes, and
when a smaller volume of samples are available [92].

Exosome loading
Although it is quite feasible to load small RNAs (siRNA
and miRNA) inside exosomes for oncogenic purposes in
clinical specimens [93, 94], encapsulating mRNA in exo-
some remains a challenge. So far, several methods have
been proposed to improve mRNA loading into exo-
somes, however, most of these methods were not suc-
cessful, and further studies are needed to achieve more
satisfactory results. In the following, the most used
methods for mRNA loading into exosomes are
mentioned.

Electroporation Electroporation has long been known
as the most rapid and efficient way to enter genetic ma-
terial into a cell. In the method, mRNA can be en-
trapped in the exosome by using an electric field and
creating small holes in the lipid bilayer of the exosome
structure, just like the process that happens to a cell.
This method is mostly used to load small RNAs such as
siRNA and miRNA into exosomes [95], but there are
some reliable reports that mRNA encapsulation in exo-
somes has been successful with this method [18, 96].
The main disadvantage of the method is the need to
purify and separate the exosomes following the loading
process [97]. To perform electroporation, the exosomes
are necessary to be diluted in a special buffer, therefore
they should be purified after the loading process. This
can lead to the potential loss of part of the exosomes
and reduces their quality.

Exosome-liposome hybrids As we know, mRNA and
DNA are easily loaded into liposomal structures, but li-
posomes cannot efficiently transfer these therapeutic
cargos to target cells [98]. Unlike liposomes, exosomes
are very efficient in delivering their cargo to the cell and
releasing them due to their special transmembrane pro-
teins for attaching to the cell and promoting endocytosis
[99]. Lin Y. et al. reported that using the exosome-
liposome hybrid, they could transfect target cells with
plasmid DNA efficiently [99]. Although this method has
not been used to load mRNA so far, it can be claimed
that just as the same mechanism which DNA molecule
loaded in the hybrid structure, mRNA can be entrapped
too. Therefore, after binding mRNA to the cationic lipo-
some, and then by incubating these liposomes with the
exosomes, an exosome-liposome hybrid would be pro-
duced which can efficiently deliver mRNA to a cell [99].
Some liposome-mRNA compounds may have no inter-
action with the exosomes, so a separation step is re-
quired. According to the approaches, exosome-liposome
hybrids have been shown to produce structures larger
than 200 nm [99, 100], therefore ultrafiltration can be
employed to separate them from a mixture of exosomes
and liposomes whose size is much smaller.

Guidance of signature sequence In this method, also
called active loading, mRNA can be entrapped into the
exosomes by employing some helper proteins. As we
know, some proteins enable to bind to specific RNA se-
quences, Packaging of mRNA inside exosome can be
easily guided through the fusion of the structural and
specific proteins of exosome and creating an engineered
cell [101, 102]. This method increases the efficiency of
mRNA loading into the exosome [97].

Aslan et al. BMC Biotechnology           (2021) 21:20 Page 7 of 12

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Transfection of donor cells The latest method of
mRNA loading into exosomes is to transfect encoded
DNA for this mRNA to the maternal cell, which is
responsible for producing exosome (exosome-producing
cell) [60]. In this method, 24 to 48 h after the transfec-
tion of the maternal cell, a culture medium containing
exosomes released from the cell is collected and
analyzed from the content of exosomal RNA, then the
mRNA transcribed from a DNA vector is determined.
Since the exosome-producing cell itself packs the desired
mRNA into the exosome structure, we could introduce
this technique as the most convenient method of mRNA
loading into exosomes [61, 93, 96].

The hope of using exosomes as a delivery vehicle
to mRNA therapy
mRNA-based delivery technique faces similar obstacles,
as well as other nucleic acids, include inefficient delivery
[11]. Recent studies have shown increasing focus on,
exosomes as promising carriers for mRNA drug delivery,
due to their biocompatibility, bioavailability, and ability
to cross BBB [10]. Theoretically, anything in the cell’s
cytoplasm can be wrapped inside these small packages,
including synthetic-mRNA from transfected parent cells
[103]. Furthermore, isolated exosomes can be loaded
with synthetic mRNA and chemotherapeutic drugs

directly via conventional transfection methods [72]. Iso-
lated exosomes can be passively transmitted throughout
the body, but their ability to target distribution princi-
pally is associated with the surface-derived targeting
molecules from parent cells [72]. Insertion of exosomes
at destination cells occurs primarily by endocytosis,
membrane fusion, or receptor-mediated internalization
(Fig. 2) [104]. Recently, microneedle injector device indi-
cates promising tool for transdermal delivery of
exosomes due to painless and efficient dermal delivery
in the skin for instance synthetic mRNA delivery with
the high secretion of humanized Gaussia luciferase
(hGLuc) protein [105] or mesenchymal stem cell (MSC)-
derived exosomes with the low dosage in hair rehabilita-
tion [106].
The following studies represent design strategies and

recent advances in the exosome-based mRNA delivery
systems to treat Parkinson’s disease, breast cancers,
leukemia, glioma, and schwannoma (See Fig. 3).

Parkinson’s disease
Since exosomes are regarded to have the potential to be
used as RNA drug vehicles, Kojima et al. focused on the
treatment of Parkinson’s disease and tried to deliver
Catalase mRNA via designed exosomes to the brain. The
most crucial reason is neuronal cell death, and the

Fig. 3 Exosome-mediated mRNA delivery for personalized medicine: different patient-derived cells such as a dendritic cell (DC), natural killer (NK)
cell, or stem cell might be used as an exosome supply. mRNA is encapsulated into cell-derived exosomes and administrated to the patient
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catalase-delivery is identified as a therapeutic approach
to keep the neurons safe from oxidative damage [107].
They used a set of EXOsomal transfer into cells
(EXOtic) devices in HEK-293 cells as exosome producer
cells to improve exosome production, specific mRNA
packaging, and release of the mRNA into the cytosol of
recipient cells. They reported that therapeutic catalase
mRNA delivered by designer exosomes, not only attenu-
ated localized neuroinflammation induced by 6-OHDA
in vitro and in vivo models of Parkinson’s disease but
also rescued neuroinflammation caused by systemic
injection of lipopolysaccharide (LPS) in vivo [60].

Breast cancer
Wang et al. utilized exosomes because of their minimal
immunogenicity, for delivery of HChrR6-encoding
mRNA, to the HER2+ cells. HChrR6 as a bacterial
enzyme can convert the prodrug (CNOB) into the drug
(MCHB) in the tumors. They showed that exosomes
loaded with HChrR6 mRNA (generated by transfection
of cells with XPort/HChrR6 coding plasmid) and
directed to the HER2 receptor (EXO-DEPTs), used in
conjunction with CNOB, can specifically kill HER2+
cells, and cause near-complete growth arrest of BC in
mice, but the tumors could not be eliminated [96].
Subsequently, HEK-293 cells were used as exosome do-
nors, due to their minimal immunogenicity [96], al-
though, in another study to further minimize the
immune rejection, exosomes were generated by mice
own dendritic cells [108]. Forterre et al. reported a lack
of toxicity and suggested that the IVT EXO-DEPTs were
instantly absorbed to HER2+ cells. This method had no
significant changes in serum biochemistry components
and whole blood hematology panels. Although, platelet
counts (PLT), mean platelet volume (MPV), and total
neutrophil counts were significantly altered. Since these
variations were not so considerable and just has an im-
pact on three hematological indexes, no critical bone
marrow failure occurred. Histopathology evaluations of
the liver, among untreated and treated mice displayed
no differences (Fig. 3) [108].

Leukemia
Usman et al. used human RBCs as exosome donors for
RNA therapy. They treated acute myeloid leukemia
(ALL) MOLM13 cells with RBC extracellular vesicles
(RBCEVs) loaded with Cas9 mRNA and gRNA targeting
the human mir-125b-2 locus. miR-125b is identified as
an oncogenic microRNA in leukemia. The results dem-
onstrated miR-125a and miR-125b expression were
decreased about 90–98%, following a 2-day treatment.
These results indicate that RBCEVs has the potential
ability to deliver the CRISPR–Cas9 genome editing sys-
tem efficiently into leukemia cells [18].

Glioma
Recently, Yang et al. investigated whether exosomes
could transfer a tumor suppressor gene called phosphat-
ase and tensin homolog (PTEN) into the glioma brain
tumors. In this study, glioma-targeting peptides were
added to the N terminus of exosomal CD47, which en-
hanced the CD47-exosome (Exo-T) uptake in glioma
cells. Following in vivo administration, Exo-Ts exhibit
significant inhibition of tumor cell proliferation without
any direct impact on other tissues and prolongation of
animal survival [61]. This study displayed that the treat-
ment with the CD-UPRT-enriched exosomes and the in-
traperitoneal administration of the prodrug 5-FC
significantly reduced the tumor proliferation [109].

Schwannoma
Mizrak et al. reported the study of engineered micro-
vesicles (MVs) secreted by HEK-293 cells, loaded with
suicide CD-UPRT mRNA or protein—for tumor ther-
apy in vivo. They uncovered that delivery of the CD-
UPRT mRNA/protein by MVs into the schwannomas
via direct intratumoral administration resulted in re-
gression of these tumors after systemic treatment with
the prodrug 5-FC, which is converted within tumor
cells to 5-FU [110].

Conclusion
Taken together, as we have highlighted here mRNA of-
fers outstanding advantages as a novel therapy over the
gene therapy or substitution therapy, including induction
of the expression of nearly all proteins, no need for nu-
cleus phase for activity, and transient effect of mRNA,
which enables the precise control of protein expression.
On top of all that, developments made in mRNA tech-
nology in recent years, such as modification and purifi-
cation methods, have made it possible to control the
adverse immunogenicity and toxicity of mRNA and
made it a unique therapeutic molecule. Further studies
have now confirmed the potential of exosome as a novel
mRNA delivery vehicle to increase the extracellular sta-
bility and made mRNA transfection more efficient as we
highlighted before. But some critical challenges regard-
ing exosomes are remaining to be solved toward the
development of successful targeted drug delivery, includ-
ing the yield of isolation of exosomes, component
characterization, the targeting efficiency, sufficient drug
loading capacity, and standardize exosome dosing. Fur-
thermore, the question of which cell type to use as an
exosome source for large-scale exosome production and
safety issues remains to be answered. Collectively,
further in vivo studies should aim at improving potency
and reducing the toxicity of exosomes to explore these
future directions moving towards therapeutic
approaches in the coming years.
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