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Abstract: In this opinion article, we discuss a serendipitous observation we made in a study inves-
tigating survival in aged mice after bacterial infection. This observation involved a non-invasive
ventilation approach that led to variable and higher survival in male and female mice with different
genetic backgrounds for the innate immune molecule, surfactant protein A (SP-A). We suggest that
employing the best ventilatory modality, whether that be HFNC or another method, may augment
the role of other factors such as SP-A genetics and sex in a personalized approach, and may ultimately
improve the outcome.

Keywords: ventilation; HFNC; COVID-19; innate immunity; surfactant protein A

1. Introduction and Discussion

Here, we discuss a serendipitous observation we made in a study investigating
survival in aged mice after bacterial infection [1]. Specifically, we discuss the application of
this finding to the human context and explore the potential for reducing disease severity
and improving survival in individuals at risk for bacterial and viral pneumonias.

Bacterial pneumonia is a major cause of mortality and morbidity worldwide. There are
various risk factors for severe disease, among which old age is one of the most important [2].
In a recent study, the incidence of hospitalization for pneumonia in patients older than 65
years was 10 times more than in younger patients [3]. Various bacterial agents are involved
as etiologic factors, however Gram-positive bacteria and Enterobacteriaceae are the most
common species [4]. Klebsiella pneumoniae is a Gram-negative bacterium that is colonized
on human mucosal surfaces and can cause serious infections, including pneumonia and
sepsis [5]. There are growing concerns about this pathogen due to various molecular
changes it has undergone making it more resistant to antibiotics, and reports of severe
infections caused by K. pneumoniae with scarce effective antibiotic therapies are on the
rise [5–8]. Numerous studies have evaluated the risk factors for hypervirulent Klebsiella
infections and explored new therapeutic approaches to improve patients’ survival and
outcome [8–10].

Innate immunity is the non-specific first line of defense of the body, which is active in
every organ against any pathogen or irritant. In the lungs, the innate immune molecule,
surfactant protein A (SP-A), interacts with the sentinel cell of innate immunity, the alveolar
macrophage, to modulate several processes of innate immunity. In humans (unlike in
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rodents), there are two SP-A genes, SFTPA1 and SFTPA2, encoding SP-A1 and SP-A2,
respectively; several genetic variants that may impact function have been identified for
each [11–15]. Human surfactant proteins (SP)-A1 and SP-A2 genetic variants differentially
affect several processes of the alveolar macrophage at baseline or in response to various
insults [1,16–23]. They also differentially affect lung function and survival of the organism,
as shown by various animal models of bacterial infection and oxidative stress [1,24,25].
These SP-A variants have been associated with differences in the susceptibility or degree
of severity of various pulmonary diseases [26–30]. Together these observations indicate
that the genetics of SP-A may play a role in innate immunity, lung function, and disease
susceptibility or severity.

In our recent study [1] evaluating the correlation of SP-A variants with survival
in aged mice after bacterial infection, we encountered a serendipitous finding. In this
experimental model of Klebsiella pneumoniae infection in aged mice, we observed that
mice exposed to high flow of humidified and warmed filtered air (FA) prior to infection
had a better survival rate than the mice in normal room air [1]. This was the case for
all humanized transgenic mice expressing different human SP-A variants, as well as in
mice that lacked SP-A. However, if SP-A was present, depending on the variant and the
sex of the animal, the rate of survival was significantly higher compared to those that
lacked SP-A, indicating a positive impact of SP-A on survival after infection. We also
observed some sex specificity with improved outcomes for the SP-A2 1A0 and 1A3 males,
even when the mice were exposed to a second insult, i.e., ozone exposure. Together
these findings indicate that the high-flow FA exposure under the experimental conditions
used in the study not only significantly improves survival, but may also “unmask” or
promote SP-A variant- and sex-specific differences implicating sex hormones and SP-A
genetics, both of which have been shown previously to act in the survival of younger mice
in the same experimental pneumonia model [24,31]. Among other possibilities, it was
postulated that increased alveolar recruitment due to high-flow ventilation enabled the
same inoculum of bacteria to spread over a larger lung surface area, resulting in a lower
bacterial density in the alveolar spaces. Another possibility was that the high-flow filtered
air and its consequences may have a positive impact on the host defense mechanisms
by either affecting the mucociliary clearance of bacteria and innate immune functions
mediated by innate immune molecules such as SP-A or by enabling a better transition from
innate immunity to adaptive immunity. The importance of SP-A has been highlighted by
our observation that in humans there is an association of a specific SP-A variant with better
survival of lung transplant patients [28]. Therefore, it is of interest to ponder whether
high-flow humidified air could further improve survival, especially during the first year
when most lung failure occurs in transplant patients. Furthermore, could the utility of this
treatment depend on the patient’s SP-A variants and sex?

In a recent study where the role of face masks in the hydration of the respiratory tract
was investigated [32], it was observed that face masks increase the humidity of inhaled air.
The authors proposed that this increased humidity is responsible for the observed decrease
in SARS-CoV-2 disease severity. They further postulated that a well-humidified respiratory
tract epithelium improves mucociliary clearance and maintains a well-functioning innate
immune system, and that this efficacious first line of defense allows time for the adaptive
immunity to come into play. This study, along with ours [1], indicates that humidified,
inspired air has a positive effect on lessening disease severity, whether in bacterial or viral
pneumonia. Whether high-flow, humidified, warmed air—as used in the animal studies—
exerts a similarly positive effect on survival or contributes to disease severity mitigation
in humans with various pulmonary diseases, especially those with either bacterial or
viral infection, remains to be determined. However, it warrants further investigation
because of its potential clinical relevance and impact on healthier outcomes. Of interest and
relevance, humidity has been proposed as a non-pharmaceutical intervention for influenza
A virus [33]. As SP-A genetics have been associated with susceptibility and severity of
many pulmonary diseases in humans [26–30,34], it is likely that similar beneficial effects
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in the presence of high-flow FA may be seen in humans with pulmonary bacterial or
viral infection.

Ventilation is the main therapeutic measure in patients with respiratory distress,
including those with bronchiolitis [35], COPD [36], and today’s pandemic situation caused
by SARS-CoV-2 infection [37]. Various non-invasive ventilation (NIV) methods have
been introduced, including standard oxygenation, prone positioning, bi-level positive
airway pressure (BiPAP), continuous positive airway pressure (CPAP), and high-flow
nasal cannula (HFNC), among which HFNC is being widely applied in patients with
respiratory distress due to its simplicity, good tolerance, safety, and also acceptable results
in clinical studies [38,39]. Some studies have demonstrated its superiority over other NIV
methods [40–42]. According to the literature, the use of HFNC has reduced the need
for invasive ventilation [43,44]. Frat et al. [45] have shown that in patients with non-
hypercapnic acute hypoxia only, HFNC could improve patients’ survival. It is proposed
that the success of HFNC in improving the outcome of respiratory distressed patients could
be due to a decrease in anatomical dead space [46,47], an improved ventilation perfusion
ratio (V/Q), good tolerance due to inhalation of humidified and warm air, positive pressure
generated by high nasal flow [48], and finally increased alveolar PO2 [45]. In contrast to
other NIV methods, HFNC is the only non-invasive respiratory support that does not
increase dead space and also decreases the work of breathing [38,39]. It is of interest to
mention that our study [1], which led to the interesting finding (i.e., of a protective role of
pre-infection of high-flow humidified and warmed air on pneumonia outcome), used a
high-flow FA exposure method that shared some similarities with HNFC.

Almost all of the data in the literature about ventilation are limited to patients with res-
piratory failure or acute hypoxemia. This is not surprising, because without any respiratory
distress there is no need for ventilatory support. Inhalation of pure or high concentrations
of oxygen for a period of time may cause oxygen toxicity [49,50]. HFNC can be set up in a
manner to deliver oxygen in a concentration similar to breathing room air (FiO2 = 0.21),
providing enhanced ventilation of the lungs without the risk of oxygen toxicity. In light
of our serendipitous finding that high-flow humidified and warmed air alleviated com-
plications, it is reasonable to consider the potential periodic use of HFNC with an FiO2 of
0.21 in patients at high risk for the development of pulmonary infections, either bacterial
or viral, and to determine whether it leads to lower infection rates and better outcomes.

The use of this non-invasive approach may be beneficial for COVID-19 patients,
especially since a significant percentage of them are also infected with other pathogens [51].
However, a number of experimental and clinical studies are needed to explore the impacts
of prophylactic ventilation using HNFC on lung function and on the innate immune
response mediated by SP-A1 and SP-A2. The potential role of SP-A variants under different
scenarios in COVID-19 patients has been discussed elsewhere [52,53].

2. Conclusions

In summary, our serendipitous finding provides a basic translational science founda-
tion as a springboard towards its clinical consideration and eventual application. These
unexpected observations showed that prior exposure to high-flow humidified and warmed
filtered air improved survival and in certain cases improved it in an SP-A-variant- and sex-
dependent manner, underscoring the roles of sex-dependent pathways and SP-A genetics
in survival from bacterial pneumonia. We speculate that in addition to the beneficial effects
the humidified air has on the epithelium and immune processes, especially those mediated
by SP-A, high-flow ventilation, as used in the animal studies, may further facilitate recovery
by enabling increased alveolar recruitment, resulting in a reduced pathogen density, better
oxygenation, and reduced breathing effort. The information presented in this editorial
highlights the fact that resolution of pneumonia is multifactorial and not simply dependent
on ventilation. However, employing the best ventilatory modality, whether HFNC or
another method, may augment the role of other factors such as SP-A genetics and sex in a
personalized approach, and may ultimately improve the outcome.
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