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Abstract 
Leishmaniasis is a neglected disease that affects more than 12 million people worldwide. After parasite inoculum by female blood-

sucking insects, e.g. Phlebotomus, neutrophils quickly infiltrate and phagocytes Leishmania parasites. Macrophages are the second 

immune cells. They possess several pattern recognition receptors that respond to different surface molecules such as 

Lipophosphoglycan, glycoprotein 63 (GP63), PPG, GIPL, CP, and SAP. It was found that Leishmania GP63 cleaves several targets of 

infected macrophages, including the myristoylated alanine-rich C kinase substrate, p130CAS, PEST, NF-B, and AP-1. After activation 

of surface molecules, lipid metabolites of arachidonic acid, including leukotrienes and prostaglandins, are important mediators in 

Leishmaniasis. These lipid metabolites can be metabolized by different enzymes, including the cyclooxygenase and lipoxygenase. 
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Introduction 

Leishmaniasis is a neglected disease of tropical and 
subtropical areas that affects more than 12 million 
people worldwide (1). Leishmaniasis is transmitted by 
female blood-sucking insects of the genus Phlebotomus 
in the 'Old' World and by species of Lutzomia in the 
'New' World. The parasite has two forms including 
Promastigote and Amastigote. Promastigotes have high 

mobility and is found in vector. Amastigote has no 
flagella and develops into phagocytic cells. It is fact that 
innate immune cells, including dermal dendritic Cells 
(DCs), Langerhans Cells (LCs) (2, 3), mast cells, T cells, 
and macrophages in the skin are the first line against 
Leishmania (4). After parasite inoculum, neutrophils 
quickly infiltrate and phagocytes Leishmania parasites 
(5-7). Macrophages are the second immune cells and are 
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the principal host cells for the Leishmania (8). Thus, 
neutrophils and macrophages play important roles in 
disease progression.  
Surface molecules: 

Surface molecules possess several Pattern 

Recognition Receptors (PRR) that respond to Pathogen-
Associated Molecular Patterns (PAMPs) present in 
the Leishmania surface. Some of these molecules are 
Lipophosphoglycan (LPG), glycoprotein 63 (GP63), 
PPG, GIPL, CP, and SAP(9, 10) (Figure 1). 

 

Fig 1. Leishmania virulence factors. This schematic shows surface molecules, including GP63, LPG, PPG, GIPL, CP, 
and SAP. 

 
 
Several host immune receptors can bind 

Leishmania components, including Complement 
Receptor (11, 12), Mannose Receptor (MR) (13), Fc 
Gamma Receptors (FcγRs) (14), Fibronectin Receptors 

(FNRS) (9), and Toll-Like Receptors (TLR) (15). It was 
found that Leishmania GP63 cleaves several targets of 
infected macrophages, including the myristoylated 
alanine-rich C kinase substrate (MARKS), p130CAS, 
PEST, NF-B, and AP-1 (Figure 2).  

 

Fig 2. GP63-mediated degradation. Leishmania GP63 cleaves several targets of infected macrophages, including the 
myristoylated alanine-rich C kinase substrate (MARKS), p130CAS, PEST, NF-B, and AP-1.  

 
Moreover, Leishmania GP63 cleaves and activates host PTPs (SHP-1, PTP1B, and TCPTP)  
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Fig 3. GP63- mediated PTP activation. Leishmania GP63 cleaves and activates host PTPs (SHP-1, PTP1B, and 
TCPTP).  

 
 
Lipid mediators: 

Lipid metabolites of Arachidonic Acid (AA), 
including Leukotrienes (LTs) and Prostaglandins (PGs), 

are important mediators in different physiological and 
pathophysiological functions, based on 5-
Lipoxygenase-Activating Protein (FLAP) pathway 
(Figure 4).  

  

Fig 4. 5-Lipoxygenase Activating Protein (FLAP) pathway.  
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They are released by cytosolic phospholipase A2. 

These lipid metabolites can be metabolized by different 
enzymes, including cyclooxygenase (COX) and 5-
lipoxygenase (5-LO). The activation of cPLA2 and 5-
LO involves an increase of intracellular Ca2+ and 
subsequently activation of certain protein kinases (16). 
The AA is presented to 5-LO by an essential accessory 
protein called 5-lipoxygenase (5-LO) activating protein 
(FLAP). LTA4 can be conjugated with reduced 
glutathione by LTC4 synthase (LTC4S) to form LTC4, or 
be hydrolyzed by LTA4 hydrolase (LTA4H) to form 
LTB4 (17). LTC4 is rapidly converted to LTD4 by the 
glutamyl leukotrienase removing glutamic acid 
molecule of LTC4, and LTD4 can be further converted 
to LTE4 by a dipeptidase which removes a glycine 
residue of LTD4 molecule (18). PGs are formed when 
AA is metabolized by sequential actions of 
cyclooxygenase (19). COX has both cyclooxygenase 
(COX) and peroxidase activity. There are three COX 

isoforms, COX-1, COX-2, and COX-3 (20). COX-1 and 
COX-3 are constitutively expressed while COX-2 is 
induced by inflammatory stimuli (21, 22). Moreover, 
four bioactive PGs are found, PGE2, PGI2, PGD2, and 
PGF2 (19). Importantly, they possess potential anti-
inflammatory effects (23).  

These effects can be used by parasites to evade the 
immune system. The most effective mechanism against 
Leishmania is the production of reactive oxygen species 
(ROS) and nitric oxide (NO) (24). An effective response 
against infection by Leishmania is given by the 
induction of Th1 and Th17 responses (25, 26), while Th2 
response promotes susceptibility (26). Elimination of 
Leishmania amazonensis by P2X7 receptor depends on 
the production of LTB4 and leukotrienes B4 receptor 1 
(BLT1) (27). Other studies have shown the production 
of LTB4 in resistance to Leishmania amazonensis and 
Leishmania braziliensis (28, 29). This resistance is due 
to the production of ROS and NO; it may be produced 
after P2X7 receptor activation (30, 31) (Figure 5). 

 

Fig 5. Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c- Src/Pyk2 and 
ERK1/2. 
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The P2X7 receptor activation and LTB4 release have 
been implicated in the polarization of Th1 and Th17 
responses (32-34). It is known that PGE2 possesses anti-
inflammatory activity, facilitating Leishmania infection 
in macrophages and suppressing inflammatory response 
in both cutaneous and visceral Leishmaniasis (35, 36). 
Several Leishmania species possess lipid corpuscles as 
organelles and are able to produce PGs such as PGF2α 
(37). PGE2 inhibits NO production (38) and Th1 and 
Th17 development (39, 40) but stimulates Th2 response, 
favoring infection (40). Leishmania has developed 
methods to subvert microbial mechanisms and immune 
responses against itself. For example, 
Leishmania  amazonensis infection increases ecto-
nucleotidase expression in DC (41). It is  found that the 
blocking of the A2B receptors increases production of 
NO and decreases parasite survival, suggesting 
participation of Adenosine (Ado) in this process (42). 
Ado increases COX-2 expression and PGE2 production 
in neutrophils (43, 44). This corroborates the fact that 
both Ado and PGE2 stimulate the release of anti-
inflammatory cytokines such as interleukin (IL)-10 in 

macrophages (45), while inhibiting the release of pro-
inflammatory cytokines such as tumor necrosis factor 
(TNF)-α and IL-12 in DCs and macrophages (46). Ado 
decreases production and release of LTB4 (47, 48), 
which modulates Microbicidal mechanisms. 
Leishmania  amazonensis is capable to negatively 
modulate the production of LTB4 via P2X7 receptor 
activation (27). However, in other species 
of Leishmania, such as Leishmania braziliensis, the 
neutrophils are important for parasite elimination (49). 
Lutzomyia longipalpis saliva also contains high levels of 
Ado, modulating the inflammatory micro-environment, 
causing NO inhibition, and macrophage inactivation, 
which in turn increases the parasitic load in 
macrophages and neutrophils (50). It was shown that 
exosomes are co-inoculated with Leishmania into 
mammalian hosts (51). It is tempting to correlate it with 
a burst of ATP secretion, local Ado generation and 
PGE2 production. Lutzomyia longipalpis saliva triggers 
the production and release of PGE2 and decreases LTB4 

(52) (Figure 6). 

 

Fig 6. Roles of Lutzomyia longipalpis saliva in the host immune response cell. After injection, a set of events can be 
triggered in the host immune response.  
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Conclusion 
They possess several pattern recognition receptors 

that respond to different surface molecules, such as 
Lipophosphoglycan, glycoprotein 63 (GP63), PPG, 
GIPL, CP, and SAP. It was found that Leishmania GP63 
cleaves several targets of infected macrophages, 
including the myristoylated alanine-rich C kinase 
substrate, p130CAS, PEST, NF-B, and AP-1. After 
activation of surface molecules, lipid metabolites of 
arachidonic acid, including leukotrienes and 
prostaglandins, are important mediators in 
Leishmaniasis. These lipid metabolites can be 
metabolized by different enzymes, including the 
cyclooxygenase and lipoxygenase. 
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