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Awareness during general anesthesia for its serious psychological effects on patients and some juristically problems for anesthetists
has been an important challenge during past decades. Monitoring depth of anesthesia is a fundamental solution to this problem.
The induction of anesthesia alters frequency and mean of amplitudes of the electroencephalogram (EEG), and its phase couplings.
We analyzed EEG changes for phase coupling between delta and alpha subbands using a new algorithm for depth of general
anesthesia measurement based on complex wavelet transform (CWT) in patients anesthetized by Propofol. Entropy and histogram
of modulated signals were calculated by taking bispectral index (BIS) values as reference. Entropies corresponding to different BIS
intervals using Mann-Whitney𝑈 test showed that they had different continuous distributions. The results demonstrated that there
is a phase coupling between 3 and 4Hz in delta and 8-9Hz in alpha subbands and these changes are shown better at the channel
𝑇
7
of EEG. Moreover, when BIS values increase, the entropy value of modulated signal also increases and vice versa. In addition,

measuring phase coupling between delta and alpha subbands of EEG signals through continuous CWT analysis reveals the depth
of anesthesia level. As a result, awareness during anesthesia can be prevented.

1. Introduction

Awareness during anesthesia is probably the most helpless
and terrifying feeling in the world. It occurs when one
is supposed to be completely asleep under full general
anesthesia, but the brain is not asleep at all. It is a severe
after-effect with potential long-term psychological outcomes
such as posttraumatic stress disorder, repetitive nightmares,
anxiety, and irritability [1].

Awareness cases were represented between 2% (ASA
Closed Claims Analysis) and 2.2% (British data) of claims
against anesthesiologists. In the USA, the median payment
for such cases is 81,000$ although recently, there have been
several cases in which much larger claims have been settled
[2, 3].

Monitoring depth of general anesthesia (DOA) is one of
the fundamental tasks of anesthetists. Accurate evaluation

of DOA helps precise drug delivering to the patients, thus
preventing awareness or excessive depth of anesthesia and
improving patients’ outcomes [4, 5].

There are numerous methods and devices to assess DOA
based on clinical sign or brain electrical activity monitoring.
According to the studies, determining DOA based on elec-
troencephalogram (EEG) parameter can bemore informative
than those just work based on simple vital signs, because
central nervous system (CNS) is the final target of general
anesthetic drugs [6].

Up to now most of EEG analyzing methods to determine
DOA were based on Fourier and Short time Fourier trans-
form signal processing approaches which in these methods
the signals have been assumed stationary and proceeding
continued, whereas the EEG signals are nonstationary. To
solve this problem, we proposed to use Morlet continuous
complexwavelet transform. In addition, it is helpful in finding
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hidden frequency information in the signal and enables a 3D
representation of the signal amplitude, frequency, and time.

Some of commercially available DOAmonitors that work
based on EEG are bispectral (BIS), Narcotrend, Entropy, and
auditory evokedpotentialmonitors.These devices are not still
exactly accurate and cases of alertness are reported even with
them [7, 8].

BIS monitor, which is a commercial device, integrates
several disparate descriptors of the EEG into a single
variable which is called BIS index. These descriptors are
burst suppression ratio, Beta ratio (log[𝑃

30–47Hz/𝑃10–20Hz]),
and higher order spectral subparameters SynchFastSlow
(log[𝐵

0.5–47Hz/𝐵40–47Hz]). 𝑃 stands for power spectrum and
𝐵 stands for bispectrum. To derive these parameters, it
is required that EEG is analyzed in time, frequency, and
bispectral domains, respectively [9].

BIS monitor is used as standard equipment for general
anesthesia monitoring, because of its presence in clinical
practice for over two decades; though it does not necessarily
mean that the BIS monitor is superior to others.

In the last decade, it has been shown that BIS has some
limitations in terms of high dependence on the type of
anesthetic agents. Another shortcoming of BIS is that the
reported index is determined after each 10 seconds, which
might be long in crucial circumstances. Moreover, BIS value
crosses the defined anesthetic levels repeatedly during painful
surgeries. In other words, BIS suffers from a significant lack
of robustness, sensitivity, and specificity [10, 11]. Therefore,
the problem of constructing an ideal DOA monitor is still
unsolved. That is why we did the present research.

EEG signals are the signatures of neural activities. They
reflect the combination of synaptic activity of excitatory
and inhibitory postsynaptic potentials produced by cortical
neurons. The shift from alertness to a state of general
anesthesia (GA) is associated by considerable changes in the
brain’s spontaneous EEG activity [12].

Most anesthetics drugs as most part of volatile and intra-
venous hypnotic the Propofol and the barbiturates in variable
doses cause dose dependent decrease of EEG frequency and
increase in amplitude. Low doses activate mainly beta (𝛽)

band and EEG mean power is decreased in alpha (𝛼) band.
By increasing the doses of anesthetics and deepening depth of
anesthesia, themean frequency of the signal decreases and its
amplitude increases then theta (𝜃) or delta (𝛿) waves appear.
In other words, by deepening anesthesia, the EEG becomes
more regular before disappearing into an isoelectric activity
in very deep anesthesia. Finally low voltage high frequency
awareness pattern of EEG is changed to the slow-wave EEG
of deep sleep, and then an EEG burst-suppression pattern.
In moderate to deep anesthesia states, the EEG is ruled by
globally coherent slow waves activities in the delta frequency
range [13–15]. At the end it can be said that general anesthetics
block consciousness by depressing the central nervous system
through decreasing at 25–50Hz band (upper 𝛽 and 𝛾 bands)
and increasing at slow waves (𝜃 and 𝛿 bands).

The brain waves recorded from the head have small
amplitude of about 100𝜇V.The frequency range of these brain
waves is from 0.5 to 100Hz, and their features are highly
dependent on the degree of activity of the brain cortex [15].

Mostly, in normal people, the brain waves may be organized
as the following classes [16].

(1) The delta (𝛿) waves include EEG waves below 3.5Hz.
They appear in deep sleep or coma, in childhood, and
in serious brain physical disease.

(2) The theta (𝜃) waves have frequencies between 4 and
7Hz. These waves appear chiefly during the child-
hood, but they also occur during emotional stress in
some adults. These waves are recorded in the parietal
region.

(3) The alpha (𝛼) waves occur at a frequency range
between 8 and 13Hz, which are seen in all normal
peoplewhen their brain is awake in a quiet and resting
state.They are usually recorded in the occipital region.

(4) The beta (𝛽) waves have low amplitude and high
frequency range between 13 and 30Hz. They are
affected by cerebral activity and can be recorded from
frontal and parietal regions.

Scalp EEG shows that delta band may include different
types of activities. Benoit et al. presented that the slow and fast
delta components differently correlate with alpha and beta
frequency bands using the scalp EEG power spectra during
non-REM sleep [17]. They chose 0.7–2Hz interval as slow
delta and 2–4Hz interval as fast delta.

Steriade and Amzica [18] and Steriade [19] by studying
on neural activities revealed that slow oscillation (<1 Hz) has
the ability to activate and cluster cortical network firing,
which correspond to higher frequency EEG activities from
delta to gamma (30–60Hz).

Phase-coupling is quantified by calculation of modulated
signal (MS) between 𝛼 and 𝛿 subbands, and determining
DOA through Shannon Entropy of MS.

Molaee-Ardekani et al. showed that phase of modulation
related to various delta subbands as very slow, slow, fast,
narrow, cumulative slow 1, and cumulative slow 2 deltas
with alpha waves had different correlations with depth of
anesthesia, and finally they implied that a fast delta subband
was the best choice among various delta subbands to correlate
with brain activities, and their phase difference changes with
DOA [9].

By considering about 0.2% incidence of awareness and
its complications in the united states of America (USA) and
multiplying this incidence rate by 22 million anesthesia cases
annually in the USA [20], we can find out the magnitude of
the problem. Finding solution to this problem can be a great
motivation to do of this study.

In this study, we developed a method for monitoring
depth of anesthesia precisely and prevent awareness and
its squeals. For this reason, we investigated modulation in
spontaneous EEGbetween𝛼 and 𝛿 bands partitioned as small
as one Hz to evaluate the depth of Propofol anesthesia by
a new algorithm based on the continuous complex wavelet
transform in order to overcome the limitations of other
monitoring approaches.
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2. Method and Materials

2.1. Data Recording Protocol. This project was approved by
the Institutional ResearchEthicsCommittee to study 6 female
patients, aged 26–72 years old (average age of patients is
45.4 years old), scheduled for elective gynecological surgeries.
All patients were in ASA I and II (American association of
anesthesiology physical status classification) and free of neu-
rological diseases. Written informed consent was obtained
from all patients.

In order to prepare patients psychologically and prevent-
ing unnecessary delay on schedule of surgery the patients
preparation period to take EEG recording was started about
an hour before the beginning of surgical operation in Pre-Op
(preoperation) period then spontaneous EEG were taken for
300 seconds. Then the patients were transferred to operating
room and before starting the OP (operational) period EEG
recording step, BIS device electrodes were attached. Duration
of spontaneous EEG and BIS data recording during surgery
for patients (Pt.) are as follows: (1) Pt. 12 (90min), (2) Pt. 13
(140min), (3) Pt. 14 (52min), (4) Pt. 17 (140min), (5) Pt. 23
(175min), (6), and Pt. 24 (105min).

In operating room Propofol was injected 30 seconds after
the beginning of the induction period of EEG recordings
and lasts as a main anesthetic in all patents accompanied
by Remifentanyl (Ultiva) during surgery and Rocuronium
Bromide (Esmeron). Spontaneous EEG recording was done
during maintenance and emergence periods of anesthesia. At
10 minute intervals before cessation of anesthetic agent and
wakening up, a long recording was done. The first and end of
operation, spontaneous EEG recorded were the longest ones.

The EEG electrode montage included 15 channels in the
10/20 standard, respectively, (Fp1, Fp2, F7, F3, Fz, F4, F8, T7,
C3, Cz, C4, T8, P3, Pz, and P4) with the electrodes referenced
to mastoids [21].

Parallel to EEG recordings, the commercially available
anesthesia monitor (BIS, Aspect Medical Systems) was used
as a reference. This device generates an index between 0 and
100, where 0 is the full cortical silence and 100 is fully awake
state, respectively.The BIS level between 40 and 60 is the said
to be appropriate state for adequate surgical anesthesia [7].

2.2. Introduced Method. Our aim is to find appropriate
channels and approaches to evaluate DOA. The proposed
algorithm consists of three main steps: preprocessing, calcu-
lation of modulated signal (MS) between 𝛼 and 𝛿 bands, and
determiningDOAby ShannonEntropy ofMS.These steps are
applied to all EEG channels.The above stages are explained in
more details at the following subsections.

2.2.1. Preprocessing. In this work, we used a preamplifier
and its software with 32 channel capacity named Brain map
device. In addition, Brain vision recorder device (Brain prod-
uct, Germany) was used to record the sampling frequency
of preamplifier and adjust the filter parameters. It can also
display real-time EEG data on the screen and save them to
a hard disk. By this program we reduced the electrode-skin
impedance to lower levels (𝑧 < 5 kΩ) before recordings

because high impedances render the signal susceptible to
artifacts.

The raw spontaneous EEG data which recorded from 15
channels were cleaned manually of artifacts which are not
patient-related (physiological), and corrupted BIS data which
identified by BIS monitor were also removed.The recorded
brain waves had small amplitude of approximately 100𝜇V
and contained frequency components of up to 300Hz. To
preserve the effective information, the EEG signals were
amplified and filtered, to reduce the noise and make the
signals proper for process and vision. Highpass filters with
a cutoff frequency of less than 0.5Hz were used to remove
the disturbing very low frequency components and high-
frequency noise was alleviated by using lowpass filters with
a cutoff frequency of approximately 50–70Hz. Notch filters
with a null frequency of 50Hz were used to guarantee the
rejection of 50Hz power supply noise. Frequency sampling
was decimated from 1000Hz to 100Hz [22].

2.2.2. Complex Continuous Wavelet Transform. The continu-
ous wavelet transform (CWT) displays the scale-dependent
structure of a signal as it varies in time.This scale-dependent
structure, in turn, is essentially the instantaneous frequency,
so that the CWT provides a view of the frequency versus time
behavior of the signal and therefore has great potential as a
preliminary tool for investigating wideband, nonstationary,
or other types of signals having time-dependent spectral
characteristics.

If 𝑥(𝑡) is a square-integrable function; that is, ∫𝑥
2
(𝑡)𝑑𝑡 <

∞, then the CWT of 𝑥(𝑡) corresponding to a given mother
wavelet 𝜓(𝑡) is defined as

𝑊
𝜓
(𝑡) = ∫

∞

−∞

𝑥 (𝑡) 𝜓
∗

𝑎,𝑏
(𝑡) 𝑑𝑡, (1)

where

𝜓
𝑎,𝑏

(𝑡) =
1

√𝑎
𝜓(

𝑡 − 𝑎

𝑏
) . (2)

Here, the wavelet 𝜓
𝑎,𝑏

(𝑡) is calculated from the mother
wavelet 𝜓(𝑡) by dilation and translation, where a and b are
real positive dilation and translation factors, respectively.

The conventional wavelet transform is based on the real-
valued wavelet function and scaling function.There are some
troubles with real wavelet such as oscillation, shift variance,
and aliasing. One solution to the mentioned problems is
complex wavelet. In this research, Morlet wavelet which is a
complex wavelet is used and it is defined as

𝜓 (𝑡) =
1

√𝜋𝐹
𝑏

× exp (𝑗2𝐹
𝑐
𝑡) × exp(−

𝑡
2

𝐹
𝑏

) , (3)

where 𝐹
𝑏
is the bandwidth parameter and 𝐹

𝑐
is the center

frequency. In this paper, all wavelets have the same band-
width, that is, oneHz, and the only difference is in their center
frequency. Therefore, all of them have the same 𝐹

𝑏
while 𝐹

𝑐

varies from one wavelet to another [23–27].
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Figure 1: Absolute of one Hz bandwidth filters used to partitioning
of delta and alpha bands into different subbands.

2.2.3. Calculation of Shannon Entropy. From the statistical
mechanics perspective of Shannon, entropy is a measure
of uncertainty associated with a random variable. Entropy
describes the irregularity, complexity, or unpredictability
characteristics of a signal. If 𝑝(𝑥) is the probability that the
outcome is 𝑥, then log(1/𝑝(𝑥)) is how surprised we would
be if the outcome was 𝑥. Since 𝑝(𝑥) ranges from 0 to 1,
the surprise ranges from ∞ to 0. Entropy is the weighted
average of the surprise across all outcomes. Shannon’s entropy
uses ℎ(𝑝(𝑥)) = log(1/𝑝(𝑥)) and is the average surprise on
discovering the outcome of a random experiment as

(𝑋) = 𝐸 [ℎ (𝑋)] = 𝐸 [− log (𝑝 (𝑋))]

= −∑

𝑥∈𝜒

𝑝 (𝑥) log (𝑝 (𝑥)) .
(4)

Entropy maximizes when 𝑝(𝑥) is the same for all 𝑥. In
other words, if the histogram or probability density function
of 𝑥 becomes uniform, the entropy of 𝑥maximizes [28]. EEG
recordings change from irregular to more regular patterns
when anesthesia deepens. Entropy of the signal has been
shown to drop when a patient falls asleep and increases again
when the patient wakes up.

The behavior of EEG in the whole of 𝛼 and 𝛿 bands
is not same. Therefore, these bands should be partitioned
into smaller subbands. In this study, a new partitioning
approach is proposed for separation of these bands. Every
band is divided into five subbands each of them with one Hz
bandwidth, 𝛿 band was divided into subbands with ranges 0-
1, 1-2, 2-3, 3-4, and 4-5Hz and 𝛼 band was partitioned into
subbands 8-9, 9-10, 10-11, 11-12, and 12-13Hz. The absolute
of wavelets of these subbands is shown in Figure 1. Then the
modulation effects between them are calculated.

The process of MS calculation of the 𝑘th EEG epoch
between the 𝑖th subband of 𝛼 band and the 𝑗th subband
of 𝛿 consists of two parallel parts. The wavelet of the 𝑖th
subband of 𝛼 and the 𝑗th subband of 𝛿 are shown by 𝜓

𝛼𝑖

and 𝜓
𝛿𝑗
, respectively. In the first part, the 𝑘th preprocessed

epoch (𝑥
𝑘
(𝑡)) is decomposed by wavelet transform of the 𝑖th

subband of 𝛼 as

𝑊
𝑘

𝛼𝑖
(𝑡) = ∫

∞

−∞

𝑥
𝑘
(𝑡) 𝜓
∗

𝛼𝑖
(𝑡) 𝑑𝑡. (5)

Then, the absolute of 𝑊𝑘
𝛼𝑖
(𝑡) is calculated as


𝑊
𝑘

𝛼𝑖


= √(R {𝑊𝑘

𝛼𝑖
})
2

+ (I {𝑊𝑘
𝛼𝑖
})
2

, (6)

whereR{⋅} and I{⋅} denote the real part and imaginary part
of the signal, respectively.

Then, |𝑊𝑘
𝛼𝑖
| is decomposed by wavelet of the 𝑗th subband

of 𝛿 band as

𝑊
𝑘

𝛼𝑖 ,𝛿𝑗
= ∫

∞

−∞


𝑊
𝑘

𝛼𝑖


𝜓
∗

𝛿𝑗
(𝑡) 𝑑𝑡. (7)

At the end of the first part, the absolute value of 𝑊
𝑘

𝛼𝑖 ,𝛿𝑗
is

calculated and denoted by (|𝑊
𝑘

𝛼𝑖 ,𝛿𝑗
|).

In the second part, at first, 𝑥
𝑘
(𝑡) is decomposed by the

decomposition wavelet of 𝑗th subband of 𝛿 as

𝑊
𝑘

𝛿𝑗
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∞

−∞

𝑥
𝑘
(𝑡) 𝜓
∗
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(𝑡) 𝑑𝑡. (8)

At the end of the second part, phase of𝑊𝑘
𝛿𝑗
(𝑡) is calculated as

∠𝑊
𝑘

𝛿𝑗
(𝑡) = tan−1(

R {𝑊
𝑘

𝛿𝑗
(𝑡)}

I {𝑊
𝑘

𝛿𝑗
(𝑡)}

) . (9)

To calculate the MS, the approach proposed in [19] is
used. The range [−𝜋 𝜋) is divided into 62 nonoverlapping
bins (about 0.1 rad for each bin).Then, the samples of∠𝑊

𝑘

𝛿𝑗
(𝑡)

that have the same bin are identified. Finally, each sample
of MS is the mean of |𝑊

𝑘

𝛼𝑖 ,𝛿𝑗
| that has the same ∠𝑊

𝑘

𝛿𝑗
(𝑡). At

the last step, the Shannon entropy of MS is calculated [29].
To calculate the entropy, 62 bin histograms of the MS are
computed and then the entropy is calculated as

𝐻 = −

62

∑

𝑛=1

𝑃
𝑛
log (𝑃

𝑛
) , (10)

where𝑃
𝑛
is the probability of each bin in the histogramwhich

is calculated as

𝑃
𝑛
=

𝑁
𝑛

62
, (11)

where 𝑁
𝑛
is the amplitude of the 𝑛th bin in the histogram.

Various signals obtained during the calculation of entropy
are shown in Figures 2 and 3 for low-BIS and high-BIS
epochs, respectively. We observe that the three subbands of
𝛿 in the range 1–4Hz and subband of 𝛼 in the range 8-9Hz
were derived from channel 8 (𝑇

7
).
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Figure 3: Different signals obtained during the calculation of entropy for high-BIS epoch. In this epoch, BIS indices are greater than 90.

2.3. Mann-Whitney U Test. To compare the entropies related
to different BIS intervals, Mann-Whitney 𝑈 test was used.
It is a nonparametric test that can be used in place of an
unpaired 𝑡-test. It is used to test the null hypothesis when two
samples come from the same population (i.e., they have the
same median) or, alternatively, whether observations in one
sample tend to be larger than observations in the other one.
Although it is a nonparametric test, it does assume that the
two distributions have similar shapes [30].

3. Results and Discussion

Wavelet analysis can be viewed as a generalization of Fourier
analysis that introduces time localization in addition to
frequency decomposition of a signal. The chief benefit of
wavelets makes them particularly suitable for the analysis
of nonstationary signals such as the EEG. In this paper, we
present a wavelet-based technique that calculates an index of
intravenous anesthesia depth based on patient’s EEG.Wavelet
analysis significantly reduces the computational complexity
to perform this task in comparison with BIS and other EEG
based methods. Also, it does not need a large number of
patients or an extensive amount of clinical EEG data for the
index derivation.

The goal of this study is to find an appropriate channel
in which 𝛼 and 𝛿 subbands have modulation effect in all
patients, and then, the behavior of the entropy in this channel
and frequency range were analyzed. The results were derived
by calculating the entropy of the MS via the proposed 𝛼

and 𝛿 bands partitioning through complex Morlet wavelet
to measure the depth of anesthesia in five patients. To
achieve this goal, the recorded BISs were divided into four
nonoverlapping ranges, 𝑅

𝑎
(20–40), 𝑅

𝑏
(40–60), 𝑅

𝑐
(60–80),

and𝑅
𝑑
(80–100).We did not consider the interval 0–20, since

the number of epochs whose relative BIS belonging to this
range was very low. The average entropy for all BIS intervals
was calculated for all channels and all possible modulations
between 𝛼 and 𝛿 subbands. The results related to one of the
patients are shown in Figure 4. In each subfigure, average
entropy for a one 𝛼 subband and all 𝛿 subbands is shown.

For a specific pair of 𝛼 and 𝛿 subbands, suitable chan-
nel is the channel that average entropy increases as BIS
range increases. In this case, we can mention that between

the specific pair of 𝛼 and 𝛿 subbands, there is modulation
effect. As seen, for all possible pairs of 𝛼 and 𝛿 subbands
in different channels, there is not modulation effect between
them and entropy does not increase as BIS increases. The
suitable channels in which there is modulation effect between
𝛼 and 𝛿 subbands are presented for all patients in Table 1. In
this Table, the term “𝑎-𝑏” means all channels from 𝑎 to 𝑏 have
modulation effect in the specified 𝛼 and 𝛿 subbands. Also,
the terms “All” and “All (E. a)” mean that all channels and all
channel except set a have modulation effect in the specified
frequency range, respectively. As seen, the modulation effect
mostly exists in the low-frequency subbands of 𝛼 band. The
suitable channel for DOA monitoring must be common in
all patients. Therefore, we observe that there is modulation
effect only between the frequency range 3-4Hz in 𝛿 band and
the frequency range 8-9Hz in 𝛼 band in the channel 8 (𝑇

7
)

for all patients. Therefore, channel 8 (𝑇
7
) and the mentioned

frequency subbands can be used for DOA measurement. In
the rest of the paper, all results are presented considering
3-4Hz subband in delta band and 8-9Hz subband in alpha
band in channel 8 (𝑇

7
). Whereas Molaee-Ardekani et al.

(2009) concluded that there is no single subbandwith the best
performance in different DOAs [9].

In all patients as BIS increases, the entropy also increases.
The mean and standard deviation of the entropies of modu-
lation signals between 3 and 4Hz delta subband and 8 and
9 alpha subband obtained in channel 8 (𝑇

7
) for different BIS

ranges (i.e., 𝑅
𝑎

∼ 𝑅
𝑑
) are shown for six patients in Figure 5.

As seen the mean of entropy increases in all patients as BIS
increases. Also, the mean entropy of specific BIS ranges is
about the same for different patients.Themaximum standard
deviation is 0.34 which is very small. It demonstrates that
the entropy obtained by the complex Morlet wavelet has low
variations in different BIS intervals. It is obvious that for high-
value BIS ranges, the standard deviation is smaller than that
of low-value BISs. This indicates that the epochs with high-
BIS values have low variations in comparison with the epochs
with low-BIS values.

The variations of the BIS and the calculated entropy
during different epochs for five patients are depicted in
Figure 6. It is observed that the entropy variations follow the
recorded BIS variations which demonstrate the efficiency of
the proposed algorithm.
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Figure 4: Average entropy corresponding to different alpha and delta subbands.



10 Computational and Mathematical Methods in Medicine

Table 1: Channels that have modulation effect in different patients.

Patient Alpha Delta
0-1 1-2 2-3 3-4 4-5

12

8-9 1, 2, 3, 7, 8 8 1, 2 8, 12, 15 5, 11, 12, 13, 14, 15
9-10 10 10 10 10, 14 10, 11
10-11 8 — — — —
11-12 6 — — — —
12-13 7 — — — —

13

8-9 13, 14, 15 12, 13, 15 6, 8, 12, 13, 15 6, 8 —
9-10 All All (𝐸. 4) All All All
10-11 — — — — 12
11-12 — — — — —
12-13 — — — — —

14

8-9 All All All All All
9-10 6, 9, 10, 13 2, 10, 12 1 1, 6 1, 2
10-11 10 — — — —
11-12 — — — 10 —
12-13 — 12 — — —

17

8-9 All (𝐸. 5) All (𝐸. 3, 5) All (𝐸. 3) All All (𝐸. 5)
9-10 All 1, 8, 9, 10, 11, 14, 15 1, 2, 4, 11, 13, 14, 15 1, 3, 10, 11, 12, 13, 14, 15 1, 3, 5, 6, 11, 13, 15
10-11 All (𝐸. 13, 15) All (𝐸. 14) All (𝐸. 14) All (𝐸. 13, 14, 15) All (𝐸. 14, 15)
11-12 1, 2, 4, 5, 6, 7, 9, 12 1, 2, 3, 5, 6, 7, 9, 10, 12 2, 3, 6, 8, 10, 13 1, 3, 4, 6, 7, 8, 9, 11, 12 3, 4, 6, 7, 12
12-13 7, 11 7, 9 — 8 2, 3, 7

23

8-9 All (𝐸. 8) 1, 2, 4, 5, 6, 7, 8 All (𝐸. 8, 12) All 1, 2, 5, 6, 7
9-10 — — — — —
10-11 — — — — —
11-12 — — — — —
12-13 — — — — —

24

8-9 8, 12 8, 9, 10, 12, 13, 14, 15 8, 14 8, 9, 14 8, 14
9-10 — — — — —
10-11 — — — — —
11-12 — — — — —
12-13 — — — — —

The term “𝑎-𝑏” means all channels from 𝑎 to 𝑏 have modulation effect in the specified 𝛼 and 𝛿 subbands. Also, the terms “All” and “All (𝐸. 𝑎)” mean that all
channels and all channel except set a have modulation effect in the specified frequency range, respectively.
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Figure 5: Mean and standard deviation (STD) of entropy of modulation signal between 3 and 4 Hz delta subband and 8-9 alpha subband
obtained in channel 8 (𝑇

7
) for different BIS intervals.

We performed statistical test to show that calculated
entropy by the proposed method in different BIS ranges is
statistically independent and comes from different popula-
tions. The BIS values from 0 to 100 are segmented into three
intervals, 20∼40 (𝑅

𝑎
), 41∼60 (𝑅

𝑏
), 61∼80 (𝑅

𝑐
), and 81∼100

(𝑅
𝑑
). For each patient, Mann-Whitney 𝑈 test was performed

for all possible pairs of entropies related to 𝑅
𝑎
, 𝑅
𝑏
, 𝑅
𝑐
, and 𝑅

𝑑
,

where the significance level was set to 0.05. The obtained
results are presented in Table 2. If 𝑃 value is smaller than the
significance level, null hypothesis is rejected (which means
𝑥 and y come from the different continuous distributions),
otherwise test is accepted. As observed, in all cases except
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Table 2: Comparison entropies correspond to different BIS intervals by Mann-Whitney 𝑈 test.

BIS ranges Test result Patient
12 13 14 17 23 24 Overall

𝑅
𝑎
, 𝑅
𝑏

h(p) 0 (0.075) 1 (0.0022) 0 (0.078) 1 (3.3𝑒 − 05) 0 (0.052) 1 (0.048) 1 (4.1𝑒 − 18)
𝑅
𝑎
, 𝑅
𝑐

h(p) 0 (0.13) 1 (0.0011) 1 (8.1𝑒 − 07) 1 (4.1𝑒 − 14) 1 (7.4𝑒 − 14) 1 (1.4𝑒 − 10) 1 (1.1𝑒 − 45)
𝑅
𝑎
, 𝑅
𝑑

h(p) 1 (0.0055) 1 (1.1𝑒 − 05) 1 (1.3𝑒 − 12) 1 (4.9𝑒 − 10) 1 (7.1𝑒 − 14) 1 (4.6𝑒 − 15) 1 (7.4𝑒 − 58)
𝑅
𝑏
, 𝑅
𝑐

h(p) 0 (0.38) 0 (0.49) 1 (2.5𝑒 − 07) 1 (7.2𝑒 − 08) 1 (5.7𝑒 − 09) 1 (3.7𝑒 − 08) 1 (7.7𝑒 − 19)
𝑅
𝑏
, 𝑅
𝑑

h(p) 1 (0.0065) 1 (0.00076) 1 (1.1𝑒 − 16) 1 (2.9𝑒 − 06) 1 (1.6𝑒 − 09) 1 (5.1𝑒 − 12) 1 (9.8𝑒 − 40)
𝑅
𝑐
, 𝑅
𝑑

h(p) 0 (0.11) 1 (0.0036) 1 (3.5𝑒 − 09) 0 (0.37) 0 (0.52) 0 (0.31) 1 (1.6𝑒 − 11)
h = 1 indicates that null hypothesis is rejected, and entropies have different populations, otherwise null hypothesis is accepted. The term “𝑎𝑒𝑏” stands for 𝑎 ×
10
𝑏.

the pair 𝑅
𝑎
, 𝑅
𝑏
, null hypothesis is rejected. Also, the obtained

𝑃 values are much smaller than 0.05 which indicates the
test rejects the null hypothesis strongly and consequently the
related entropies of different BIS intervals (i.e.,𝑅

𝑎
,𝑅
𝑏
,𝑅
𝑐
, and

𝑅
𝑑
) have different continuous distributions.
We have alsomerged the entropies of all patients together

and then performed the statistical analysis. The results are
presented in the last row of Table 2. As it indicates, in this case
the null hypothesis is also strongly rejected. All findings imply
that entropies of the various BIS intervals come fromdifferent
distributions which show the proposed method can be used
to measure the depth of anesthesia with high accuracy.

As shown in Table 2, our approach based on continuous
complex Morlet wavelet transform has more sensitivity in
analyzing DOA corresponding to different BIS values than
other studies in this field. Consequently, it leads to precise
anesthetic drugs administering, preventing awareness, anes-
thesia related risks, and improve anesthesia outcome.

4. Conclusion

In this study, a new method for DOA measurement based
on Morlet Complex CWT was presented. Delta and alpha
bands were partitioned into five oneHz bandwidth subbands.
DOA was measured using Entropy of MS among them in
different channels. Obtained results in terms of mean of
different BIS ranges showed that MS between 3 and 4Hz and
8-9Hz subbands in channel 8 (𝑇

7
) achieves the best results

in DOA measurement. Mann-Whitney 𝑈 test also showed
that average entropy at various BIS intervals has significant
difference which shows the proposed method can be used to
measure the depth of anesthesia with high accuracy.
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