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Objectives: Oxidative stress has been implicated in the pathogenesis of several inflammatory and
immune-mediated disorders including Hashimoto's thyroiditis (HT). The objectives of the present
cross-sectional investigation were to estimate serum glutathione (GSH) status and the activities of its
recycling enzymes in HT and to explore their interrelationships with biomarkers of autoimmunity and
thyroid function.

Design and methods: Newly diagnosed females with HT (n=44) and 58 matched control subjects were
recruited. Thyroid hormone profile, anti-thyroperoxidase anti-body (TPO-AB), anti-thyroglublin antibody
(Tg-AB), thyroid volume (Tvol), urinary iodine excretion (UIE), GSH and the activities of glutathione
peroxidase (GPx), glutathione reductase and gamma-glutamyltransferase were assessed.

Results: Median UIE in HT was slightly but not significantly higher than that of controls. HT group
exhibited higher levels of TSH, TPO-AB, Tg-AB and larger Tvol when compared with controls (Pb0.001).

The means of GSH and GPx in HT patients were significantly different from those of controls (Pb0.001).
In HT subjects, significant associations were seen between Tvol on TSH, GSH on TPO-AB, GSH on TSH and
TPO-AB titers on TSH, respectively.

Conclusions: This is the first study to demonstrate a substantial reduction in GSH status in HT subjects.
Secondly, the interrelationship between the GSH contents and TPO-AB titers in HT provides a preliminary
data to support the notion that GSH diminution is a hallmark of in the events leading to oxidative stress
activation and the development of immunological intolerance in HT. Further studies are required to elucidate
the role of GSH in the etiology of down-regulation of thyroid function.
© 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Introduction

Growing evidence suggests that several clinical conditions,
inflammatory and immune-mediated disorders including Systemic
Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA) are linked
with lower cellular redox potential and/or enhanced oxidative stress
[1–3]. Increased oxidative stress may induce the expression of a
variety of immune and inflammatory molecules leading to tissue
damage [4].

Hashimoto's thyroiditis (HT) is amulti-factorial disease and one of the
most frequent human thyroid autoimmune diseases [5,6]. Pathogenesis
of HT is characterized by progressive thyroid cell destruction [6,7]. Exces-
sive dietary iodine intakehas strongly been implicated as an environmen-
tal trigger of HT [8–10]. High iodine intake exerts an array of inhibitory
effects on thyroid hormone biosynthesis and secretion [11]. It has also
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been demonstrated that excessive iodine intake attenuates cellular anti-
oxidant capacity in experimental models [12]. Moreover, recent prospec-
tive studies have shown that even minimal elevation in iodine levels
in iodine-replete regions is associated with increased incidence of HT
[5,13,14].

Reduced glutathione (GSH) is the most abundant non-protein
thiol in mammalian cells. It represents the first line of cellular antiox-
idant defense against oxidative damage [15–17]. Several lines of
evidence suggest that GSH depletion is implicated in the etiology of
an array of clinical conditions including diabetes, neurodegenerative
diseases and cancer [17–19]. GSH is also recognized as an important
regulator of the immune system [20–25].

There are two studies showing increased oxidative in HT as
assessed by elevated lipid peroxidation and/or decreased antioxidant
status but information regarding iodine status, glutathione levels and
auto-antibodies are lacking [26,27]. Moreover, it has been reported
that oxidative stress is slightly but significantly elevated in hypothy-
roid patients with positive antithyroperoxidase antibody (TPO-AB)
compared to negative TPO-AB matched controls [28]. Therefore, the
d by Elsevier Inc. All rights reserved.
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current cross-sectional investigation was undertaken to evaluate
serum glutathione and its recycling enzymes in newly diagnosed
females with HT residing in a border-line iodine sufficient region
(100 μg/L>median urinary iodine excretion (UIE) b150 μg/L) and
to explore their interrelationship with TPO-AB, anti thyroglubolin an-
tibody (Tg-AB) titers, thyroid volume (Tvol) and thyroid functional
status. As a control group, age and gender matched individuals
without any history of thyroid- and autoimmune dysfunction were
employed.

Materials and methods

Reagents

NADPH, Na2-EDTA, reduced glutathione, DTNB and glutathione
reductase was purchased from Sigma-Aldrech Incorporation (Dorset,
UK). All other chemicals were obtainedMerck (Darmstadt, Germany).

Subjects and patients

Patient group consisted of 44 newly diagnosed females with HT at-
tending the Endocrinology Outpatient Clinic at ImamKhomeini Teaching
Hospital, Urmia, Iran (November-2009 and August-2010). Exclusion
criteria were menopausal state, pregnancy, anti-thyroid drug therapy
and/or antioxidant therapy within the last 6 months. As a control
group, 58 females (-TPO-AB)without any history of hypothyroid and au-
toimmune dysfunction were employed. This investigation was approved
by the ethical committee at the Urmia University of Medical Sciences,
Iran. Informed consent was obtained from all patients before entering
the study.

Blood collection

Blood samples (5 mL) were collected by venous puncture. The
blood sample was allowed to stand for 10 min at room temperature
and subsequently centrifuged at 1000 ×g for 15 min. Serum aliquots
(250 μL) was transferred into Eppendorf tubes and kept −70 °C
until analysis.

Urine collection

Fasting urine samples (10 mL) were collected. Aliquots (1 mL)
were transferred into Eppendorf tube and kept at −70 °C until
analysis.

Assessment of thyroid volume (Tvol)

Tvol was determined using a 7.5 MHz linear transducer real-time
ultrasonography instrument (Toshiba Nemio30, Japan). Examination
was carried out in supine position, with neck hyper extended by a senior
radiologist. Tvol was calculated as follows: width×length×depth×0.479
for each lobe [29]. Tvol is referring to the sum of the volumes both lobes.

Thyroid function and antibody tests

Serum free thyroxine (fT4), free triiodothyronine (fT3) and thyro-
tropin (TSH) were estimated by enzyme immunoassay (EIA) (Pishtaz
Teb, Tehran, Iran). Normal reference range fT4, fT3 and TSH were 0.7–
1.8 ng/dl, 1.9–4.3 pg/mL and 0.32–5.2 mIU/L, respectively. TPO-AB-
and Tg-AB EIA-kits were obtained from Aeskue (Hamurg, Germany).
Recommended range for negative, equivocal and positive TPO-AB were
≤40 IU/mL, 40–60 IU/mL and >60 IU/mL, respectively. Recommended
range for negative, equivocal and positive Tg-AB was ≤120 IU/mL,
120–180 IU/mL and >180 IU/mL, respectively.
Assessment of urinary iodine excretion (UIE)

UIE was assessed by the Sandell–Koltoff reaction. Briefly, urine
sample was incubated with ammonium persulfate at 100 °C for
40 min to liberate iodine. The decline of the yellow colored cerium
solution [cerium (IV)] in the presence of iodine was measured
spectrophotometrically at 410 nm [30,31].

Glutathione assay

GSH was determined by the recycling method as described else-
where [32]. Briefly, serum (100 μL) was mixed with sulfosalicylic
acid 5% (100 μL) and subsequently centrifuged for 10 min at
1000 ×g. Supernatant (50 μL) was mixed with phosphate-EDTA
buffer (0.1 mol/0.001 mol; pH: 7.4; 200 μL), NADPH (2 mg/mL in
0.1 mmol/L KOH; 100 μL), DTNB (1.5 mg/mL in 0.5% NaHCO3;
20 μL) and glutathione reductase (6 U/mL in 0.1 mol/0.001 mol
phosphate-EDTA buffer; 20 μL). Absorbance was read at 412 nm
using a double beam UV/Vis Perkin Elmer spectrophotometer.

Glutathione peroxidase (GPx) assay

GPx activity was measured as described previously by Paglia et al.
[33]. Serum (50 μL) was mixed with (950 μL) of reaction mixture
containing Tris buffer (50 mmol/L; PH 7.6), Na2EDTA (1 mmol),
GPx (2 mmol), NADPH (0.2 mmol), sodium azide (4 mmol) and
glutathione reductase (1000 U). The sample was incubated at 37 °C
for 5 min and finally was mixed with of H2O2 (8.8 mmol/L; 10 μL).
Absorbance was read at 340 nm for 3 min.

Glutathione reductase (GR) determination

GR activity was carried out as previously described by Delides et
al. [34]. Serum (50 μL) was mixed with reaction mixture (1.4 mL)
containing phosphate buffer (0.15 mol/L, pH 7.2), EDTA-disodium
salt (15 mmol/L), NADPH-tetrasodium salt (10 mmol/L). Absorbance
was read at 300 nm for 5 min.

Gamma-glutamyltransferease (GGT) estimation

Serum (100 μL) was mixed with glycylglycine buffer (1 mL; 14.5gr
Tris-base, 11.9gr glycylglycine, 2.44gr MgCl2 (6H2O2), pH 8.2) and the
sample was incubated for 3 min at 37 °C. Subsequently, the reaction
was initiated by adding 100 μL of glycylglycine 100 μL gamma-glutamyl
p-nitroaniline (1.37gr in 0.15 μM HCL). Absorbance was monitored at
405 nm for 5 min [35].

Statistical analysis

Data handling was carried using SPSS software for windows ver-
sion 16 (SPSS Inc., Chicago, USA). Quantitative data were expressed
as either median or mean±SD. Normality of data distribution was
assessed with Kolmogorov–Smirnov test. Non-parametric data were
analyzed by the Mann–Whitney test. Differences between categories
were tested with one way ANOVA or Scheffe test for multiple compari-
sons. Correlations between the different parameters were calculated by
linear regression analysis. P≤0.05was considered statistically significant.

Results

Table 1 display anthropometric- and biochemical characteristics
for control (negative TPO-AB) and HT groups. No significant differ-
ence was seen in mean age between control–and HT groups
(Pb0.421). Mean BMI in HT subjects was higher when compared to
controls (Pb0.019). Mean Tvol was larger in HT patients than that
of controls (P=0.001). The means of Tg-AB titers and TPO-AB titers



Table 1
Demographics and biochemical characteristics of individuals with Hashimoto's
thyroiditis and controls.

Parameters Controls (n=58) Hashimoto thyroiditis (n=44) P-value

Age (old years) 34.53±10.07 33.00±10.21 Pb0.421
BMI (kg/m2) 25.93±5.24 29.35±9.12 Pb0.009
Tvol (mL) 10.15±4.20 17.23±8.62 Pb0.001
Tg-AB 19.77±29.68 653.62±954.00 Pb0.001
TPO-AB (IU/mL) 4.60±5.65 475.07±293.02 Pb0.001
TSH (mIU/L) 1.40±1.16 19.68±13.04 Pb0.001
fT4 (ng/dL) 1.16±0.30 0.80±0.39 Pb0.001
fT3 (pg/mL) 3.66±0.64 3.39±3.43 Pb0.561
UIE (μg/L) 130.52±113.58 169.01±133.62 Pb0.121

Data are represented as the mean±SD.

Table 2
Glutathione levels and the activities of glutathione reductase, glutathione peroxidese
and gamma-glutamyl transferease in sera from patients with Hashimoto's thyroiditis
(n=44) and matched control subjects (n=58). Data are presented as the mean±SD.

Control group (n=58) Hashimato's thyroiditis (n=44)

GSH (μmol/L) 6.2±4.1⁎ 2.4±2.2
GPx (IU/L) 276.5±45.5⁎ 329.5±65.2
GR (IU/L) 36.9±15.5 35.2±11.1
GGT (IU/L) 19.4±12.2 18.6±7.3

Data represents the mean±SD.
⁎ Pb0.05; Control group vs. Patient group.
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were also higher in HT subjects than that of controls (both Pb0.001).
HT group exhibited higher TSH but lower fT4 than that of controls
(both Pb0.001). Mean UIE was marginally higher in HT subjects rela-
tive to than of controls but the difference failed to reach statistical
significant (130.52±113.58 μg/L vs. 169.01±133.62 μg/L; Pb0.121)
(Fig. 1).

HT patients exhibited markedly lower mean serum GSH level
when compared to controls (Pb0.001). A significant difference was
also seen in mean GPx activity between HT cases and control group
(Pb0.001). On the other hand, no differences were seen in either
the mean of GR activities or the mean of GGT activities between HT
group and control subjects. Mean levels of GSH, GPx, GR and GGT in
HT patients and controls is shown in Table 2.

As shown in Fig. 2A, Tvol was correlated with TSH levels in indi-
vidual with HTs (Pb0.001). A moderate association was also seen
between TSH levels and TPO-AB titers (Fig. 2B). Moreover, significant
relationships were obtained between GSH levels on TPO-AB titers and
GSH levels and TSH levels in individuals with HT (Fig. 2C and D). No
significant correlations were seen between Tg-AB with either thyroid
hormones or GSH levels and its recycling enzymes.

Discussion

In the present investigation, we have employed a battery of bio-
chemical tools to explore the relationship between oxidative stress
as assessed by serum glutathione and its related enzymes including
GPx, GR or GGT and thyroid functional status in newly diagnosed
but untreated HT patients. This study extends beyond that of Alsayed
et al. [36] in the terms that we have employed HT subject residing in
moderate iodine sufficient region (100 μg/L>median UIE b150 μg/L)
to minimize the deterioration effect of excess on cellular antioxidant
Fig. 1. Median urinary iodine excretion (UIE) levels in subjects with Hashimoto
thyroiditis (n=44) and control subjects (n=58).
capacity. We report that median UIE in the patient group was margin-
ally but not significantly higher than that of controls subjects. An im-
portant finding from the current investigation is that mean GSH levels
in HT patients is markedly lower compared to healthy controls. The
fall in GSH levels coincided with a marked elevation of GPx activities
in HT patients. On the other hand, no differences were seen in either
GR activities or GGT activities between HT patients and healthy
matched controls. Another important observation from the current
investigation is that GSH levels were inversely and significantly corre-
lated with TPO-AB titers as well as TSH activities in HT patients. The
levels of TSH in HT patients were also strongly and positive correlated
with TPO-AB titers.

Mechanism(s) linking deterioration of cellular antioxidant de-
fense to the pathogenesis of autoimmune thyroiditis is not fully
clear [6]. However, it has postulated that overproduction of ROS is
main event leading to apoptosis and cell necrosis and eventually thy-
roid dysfunction [37,38]. Elevated ROS beyond that needed for the
activation of normal biochemical processes would deplete whole body
non-enzymatic cellular antioxidants including GSH and/or up-regulate
the activity of enzymatic cellular antioxidants such as GPx. Moreover,
excess ROS would increase the likelihood of polyunsaturated fatty
acid auto-oxidation and generation of an array of aldehydes. Of these,
4-hydroxy-2-alkenals (4-HNE) has received themost attention because
of its adverse biological effects. Interaction between 4-HNE and native
proteins yields aldehyde protein adducts with the capability to induce
pathogenic antibodies which also directly or indirectly participates in
the generation of ROS [39,40].

In the current study, we report that whole body iodine store as es-
timated by UIE was 30% higher in HT patients relative to that of con-
trol groups. Our hypothesis is that a sub-marginal increase in whole
body iodine store may overwhelm enzymatic and/or non-enzymatic
antioxidant systems against oxygen reactive species in autoimmune
susceptible individuals. The exact mechanism for excess iodine in-
duced oxidative stress in not fully understood. However, when iodide
(I−) is present in excess relative to tyrosine residues, the iodide reacts
with the iodinium cation (I+) produced during enzymatic iodide ox-
idation by thyroperoxidase to yield molecular iodine (I2). Interaction
between endogenous peroxides and I2 may lead to the generation of
ROS [41,42]. Excess ROS will also lead to augmentation of cellular an-
tioxidant capacity and thyroid dysfunction.

GSH is a reliable predictor of the antioxidative capacity of the
whole body. In contrast to high intracellular GSH concentration
(mM), its extracellular GSH concentration is kept at low μM range be-
cause of its rapid turnover [15]. GSH is essential during T lymphocyte
proliferation, cell cycle progression from the G1 to S phase and DNA
synthesis [43]. Moreover, considerable evidence has built up from
experimental as well as clinical studies to support the notion that
GSH depletion in the pathogenesis of autoimmune diseases through
inhibition of IL-1 and T-cell receptors-mediated transduction signal-
ing [20,22]. Low GSH has also been linked with apoptosis and cell
death [22,44].

In the current study, we report that serum GSH is 62% lower in HT
patients than that of matched healthy controls. This is markedly
lower than previously reported values (18–26%) reported for a



Fig. 2. Associations between markers of thyroid malfunction and/or oxidative stress in individuals with Hashimoto thyroiditis (n=44). A: Thyroid volume (Tvol) and thyroid stim-
ulating hormone (TSH) levels; B: Thyroid stimulating hormone (TSH) levels and anti-thyroperoxidase antibody (TPO-AB) titers; C: Glutathione (GSH) levels and
anti-thyroperoxidase antibody (TPO-AB) titers; D: Glutathione (GSH) contents and thyroid stimulating hormone (TSH) levels.

311R. Rostami et al. / Clinical Biochemistry 46 (2013) 308–312
comparison of serum GSH levels between healthy controls and those
with hypothyroidism [45,46]. These findings indicate that the pres-
ence of autoimmune antibodies is likely to be an important factor
for the enhancement of ROS production which eventually leads to cel-
lular antioxidant depletion. Indeed, we have found a significant
inverse association between GSH contents and TPO-AB titers in HT
subjects. The latter finding provides the first clinical support for the
theory that GSH is capable of inhibiting complement-mediated
damage in autoimmune diseases [24]. Hence, we suggest that GSH
diminution is possibly a hallmark of in the events leading to oxidative
stress activation and the development of immunological intolerance
in HT. Further studies with larger sample size are required to
reestablish the relation between GSH status and TPO-AB titers and
to evaluate the impact of therapeutic antioxidant on the appearance
of TPO-AB titer in HT subjects.

Another finding from the present investigation supporting increased
oxidative burden in HT patients is up-regulation of extracellular GPx ac-
tivity. GPx is a seleno-cysteine protein which is responsible for the enzy-
matic reduction of catalyzes H2O2 [47]. The physiological functions of
thyroidal GPx are protection of thyrocytes from oxidative damage and
modulation of thyroid hormone biosynthesis [48]. Information regarding
GPx activity in individual with hypothyroidism is conflicting; some have
reported an increase while others reported a decline or no changes
[45,46,27]. However, in the current investigation we reveal that GPx ac-
tivity in HT patients is 19% higher than that of healthy control subjects.
The up-regulation of GPX activity in HT patients reflects enhancement
of oxidative stress. Mechanism of H2O2 production in the HT subjects is
intricate. The proposed pathways for endogenous H2O2 production in
the presence of excess iodine are over expression of NADPH oxidase
and reaction between excess iodide and tyrosine resides on thyroglublin
[41,44,49,50].

H2O2 itself is not highly reactive as an oxidant, but it can be acti-
vated {i.e. converted to hydroxyl radicals (HO.)} in the presence of
transition metal ions such as Fe3+ and Cu2+. Hydroxyl radical reacts
with many cellular components including polyunsaturated fatty acids
from the follicular cell membrane leading to increased production al-
dehydes with the capability to induce pathogenic antibodies [4]. The
absence of inter-correlations between GPx activities in HT patients
and GSH, TSH, Tg-AB or TPO-AB suggest that the enzyme is probably
acting beyond it Vmax and thus exhibiting a lower capacity to neutral-
ize accumulated H2O2 in the cell [51]. Abundance generation of ROS can
act as a secondmessenger to stimulate nuclear factor kappa B-dependent
expression of pro-inflammatory cytokines such as I-CAM1and IL-6. These
events form an augmentation loop that feeds back to further stimulate
the production of additional ROS. ROS levels in cells are influence by
GSH viability. ROS levels can either activate or inactivate specific redox
sensitive targets at cell cycle checkpoints, thereby influencing cell destiny
[6].

In conclusion, this study has revealed that sera antioxidant capac-
ity as estimated by GSH content and GPx activity is substantially
reduced in individuals with HT. Secondly; the interrelationship be-
tween the GSH contents on TPO-AB titers or TSH levels and TSH
levels on TPO-AB titers in HT provides direct support the notion
that GSH diminution is a hallmark of in the events leading to oxida-
tive stress activation and the development of immunological intoler-
ance in HT. Further studies with larger sample size are required to
elucidate the role of GSH in the etiology of down-regulation of
thyroid function.

image of Fig.�2
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